TOWN OF VERMILION SANITARY TRUNK FLOW MONITORING AND UPGRADING

Project number 102414 -20

Prepared by: Focus Corporation Suite 300, 9925-109 Street Edmonton, Alberta, Canada, T5K 2J8

Submitted to: Town of Vermilion 5021 – 49 Avenue Vermilion, Alberta, Canada, T9X 1X1

Engineering - Geomatics - Planning www.focus.ca

TOWN OF VERMILION SANITARY TRUNK FLOW MONITORING AND UPGRADING

Prepared for: The Town of Vermilion

Prepared by: Focus Corporation

Project No.: 102414-20

March 2010

Town of Vermilion – Sanitary Trunk Flow Monitoring and Upgrading

CORPORATE AUTHORIZATION

This report entitled "Town of Vermilion Sanitary Trunk Flow Monitoring and Upgrading", was prepared by Focus Corporation (Focus) for the account of The Town of Vermilion. The material in it reflects the judgment of Focus, in light of the information available at the time of preparation. Any use of the information by a third party, or any reliance on or decisions made on it are the responsibility of such third parties. Focus accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made, or actions taken, based upon information contained in the report.

PROFESSIONAL SEAL BLAIR E. RAYMOND, M.SC., P.ENG.

PERMIT TO PRACTICE
FOCUS CORPORATION
Signature
Date April 12/15
PERMIT NUMBER: P 6386
The Association of Professional Engineers, Geologists and Geophysicists of Alberta

PERMIT TO PRACTICE

Executive Summary

The Town of Vermilion sanitary trunk sewer is currently undersized for the majority of the sanitary peak wet weather flow. As the Town grows in size and population, the existing system is expected to be upgraded in order to accommodate the increasing sanitary flows. In 2007 the Town retained the Focus Corporation for services including a flow monitoring program and conceptual upgrading recommendations for the existing sanitary trunk sewer.

The flow monitoring program extended from the end of June until mid September 2007. GEOtivity Inc., was retained to install and maintain flow monitors at four locations along the sanitary trunk, as well as a rain gauge to collect rain data. Upon reviewing the flow monitoring data it was decided by Focus that none of the monitoring sites produced data that could be used for estimating average dry weather flows. Possible causes for the poor quality of the data include probe malfunction, drift or poor conditions for flow monitoring. An average dry weather residential flow generation rate of 300 L/person/day was selected instead. The other design criteria used in this analysis were based on the City Of Edmonton Design and Construction Standards.

Sanitary trunk survey data and sanitary trunk elevations from Town engineering drawings were compiled to create a spreadsheet model of the sanitary trunk main. The model was used to calculate the current flow rates and pipe capacities and identify the portions of sanitary sewer trunk currently operating over capacity.

The existing condition analysis confirmed that most of the sanitary sewer trunk west of Highway 41 had additional capacity, although there were several segments of 300 mm sewer currently over 86% of pipe capacity. East of Highway 41 the existing trunk was severely undersized, with utilization as high as 311% upstream of the WWTP. The sewer utilization was reviewed with the addition of approximately 85 ha of future residential development in the west end of the Town and 14 ha commercial development along Highway 41. This scenario showed that sewer utilization is expected to increase and affect parts of the trunk that were previously operating under capacity as well as worsen the conditions west of Highway 41.

Based on these findings, conceptual upgrades were recommended to provide adequate pipe capacity for future development. The proposed sewer improvements were prioritized based on the severity of the capacity constraints. The highest priority was assigned to the sewer section east of the Highway 41 crossing. Two options were examined for the conceptual sizing of the new trunk: a twinning option that would carry a portion of the flows while maintaining the existing trunk in service and a replacement option that would carry all the flows and see the old trunk abandoned. The condition of the existing sewer trunk would need to be assessed prior to selecting the first option. For the second option it was assumed that the existing trunk would remain in service during construction of the new sewer.

Due to the shorter length of the upgrades, the undersized sewer sections west of Highway 41 can be removed and replaced, while optimizing pipe slopes between tie-in points. Since some of the pipes to be upgraded are located in the Provincial Park, it is preferable to replace this sewer section at once.

Conceptual cost estimates have been included for both the twinning and replacement options.

Table of Contents

EXECUTIVE SUMMARY

1.0	INTR		1-1
	1.1	Scope of Work	1-1
2.0	DAT	A COLLECTION	2-1
	2.1	Existing Sanitary Trunk Sewer	2-1
	2.2	Flow Monitoring Program	2-1
3.0	SAN	ITARY TRUNK SEWER ANALYSIS	3-1
	3.1	Flow Monitoring Data Analysis	3-1
	3.2	Design Criteria	3-3
	3.3	Sanitary Trunk Model	3-4
4.0	COS	T ESTIMATES	4-1
	4.1	Sanitary Trunk Upgrades West of Highway 41	4-1
	4.2	Sanitary Trunk Upgrades EAst of Highway 41	4-2
5.0	CON	ICLUSIONS AND RECOMMENDATIONS	5-1
	5.1	Conclusions	5-1
	5.2	Recommendations	5-1
6.0	REF	ERENCES	6-1
			•

APPENDIX A - Flow Monitoring Data

List of Tables

Table 2.1	Flow and Rainfall Monitoring Locations	2-1
Table 3.1	Measured Flows	3-2
Table 3.2	Flow Generation and I/I Calculations	3-2
Table 3.3	Existing Sewer Utilization Calculations	3-7
Table 3.4	Existing Sewer Utilization Calculations with Future Development	3-8
Table 3.5	Future Sewer Utilization Calculations - Twinning	3-9
Table 3.6	Future Sewer Utilization Calculations - Replacement	3-11
Table 4.1	Cost Estimates – Sanitary Trunk Upgrades East of Highway 41	4-3
Table 4.2	Cost Estimates – Sanitary Trunk Upgrades West of Highway 41 – Twinning	4-4
Table 4.3	Cost Estimates – Sanitary Trunk Upgrades West of Highway 41 – Replacement	4-5

List of Figures

Figure 2.1	Existing Sanitary Sewer Trunk	2-4
Figure 2.2	Flow and Rainfall Monitoring Locations	2-5
Figure 2.3	Sample Depth, Velocity and Flow Data	2-6
Figure 2.4	Daily Rainfall Data	2-7
Figure 3.1	Land Use Plan	3-12
Figure 3.2	Future Growth Areas	3-13
Figure 3.3	Flow Data Comparison Between Monitoring Sites	3-14
Figure 3.4	Existing Sanitary Sewer Trunk Utilization	3-15
Figure 3.5	Existing Sanitary Sewer Trunk Utilization with Future Development	3-16
Figure 3.6	Upgraded Sanitary Sewer Trunk Utilization - Twinning	3-17
Figure 3.7	Upgraded Sanitary Sewer Trunk Utilization - Replacement	3-18
Figure 3.8	Proposed Sanitary Trunk Upgrades 1, 2 and 3	3-19
Figure 3.9	Proposed Sanitary Trunk Upgrade 4.A	3-20
Figure 3.10) Proposed Sanitary Trunk Upgrade 4.B	3-21

1.0 Introduction

1.1 SCOPE OF WORK

The Town of Vermilion Sanitary Trunk Flow Monitoring and Upgrading study presents the results of a sanitary flow monitoring program and the recommended upgrades for the sanitary trunk sewer in the Town of Vermilion. This work was undertaken by the Focus Corporation on behalf of the Town of Vermilion.

The scope of work in the study included the following:

- A flow monitoring program during the summer of 2007 to monitor peak flows in the sanitary trunk for the purpose of determining the utilization of the sewer.
- An assessment of the capacity of the existing sanitary trunk sewer. The assessment looked at pipe capacities under Peak Wet Weather Flows conditions and highlighted the existing system deficiencies.
- Proposed sanitary sewer trunk upgrades as needed for future development within the current Town boundaries

2.0 Data Collection

The sources of information used in this report include:

- Sanitary sewer CAD drawings including pipe diameter, lengths and slopes for portions of the existing sanitary sewer system, provided by the Town;
- Sanitary trunk survey information, provided by the Town;
- Town of Vermillion land use and planning information;
- As-built engineering drawings of the sanitary trunk sewer, provided by the Town;
- Sanitary flow and rainfall monitoring data from GEOtivity Incorporated.

2.1 EXISTING SANITARY TRUNK SEWER

Based on discussions with the Town of Vermilion, only the sanitary trunk main was used in the analysis. The monitored portion of the sanitary trunk begins as a 300 mm sewer. The trunk crosses Highway 41 in a 600 mm casing with 500 mm liner and then flows east into another 300 mm sanitary sewer. This sewer becomes a 375 mm just north of Young Drive and continues east to the Wastewater Treatment Plant. The existing sanitary trunk system is shown in Figure 2.1.

2.2 FLOW MONITORING PROGRAM

GEOtivity Incorporated, a company specialized in flow monitoring was retained to install and maintain several flow monitors along the sanitary trunk. Four monitoring locations were selected by the Focus Corporation following discussions with GEOtivity Incorporated and also based on lateral sewer connections, accessibility and flow conditions. A rain gauge was also installed at the Town office, to collect rain data during the flow monitoring period.

The flow monitoring program extended from the end of June until mid September 2007. The monitoring equipment consisted of flow monitors that measured velocity and depth, which are then used along with the pipe geometry to calculate flow rates. The locations of the flow monitors and rain gauge are listed in Table 2.1. These locations are also illustrated in Figure 2.2 along with the sanitary drainage areas that contribute flows to the monitoring sites.

Table 2.1	Flow and	Rainfall	Monitoring	Locations
		Nannan	monitoring	Locations

ltem	Location
Flow Monitor 1	West of the Wastewater Treatment Plant
Flow Monitor 2	50 th Street (Pare Drive), north of Young Drive
Flow Monitor 3	Park Drive and 56 th Street
Flow Monitor 4	Corner of Park Drive, north of 56 th Street
Rain Gauge	Town Office, 5021 – 49 th Avenue

It should be noted that there are a number of factors that contribute to the success of a flow monitoring program. One of the contributing factors is the configuration of the system at the location being monitored. The configuration of the pipes at the manhole chosen for monitoring, as well as the typical flow depth and velocity in the pipe being measured contribute to the quality of the resulting data. For instance, low flow depths and velocities may lead to ragging or fouling on the probes as the flow may not be vigorous enough to prevent debris from catching on the probe. Additionally, very small flow depths can sometimes be problematic to measure.

When the intention of the flow monitoring is to determine peak flows and evaluate the inflow/infiltration (I/I) into a sanitary sewer the pattern of rainfall during the monitoring period is also a factor. Although one season may provide sufficient data to provide a good sense of flow rates, patterns, and rain influences, it should be noted that there is no guarantee that one season of flow monitoring will provide the type of flow data or rainfall events of interest. Typically obtaining data over a series of seasons increases the likelihood of collecting data for the desired weather and flow conditions.

The monitoring sites are discussed below. The flow monitoring data from all of the sites is attached in Appendix A.

2.2.1 Flow Monitor 1

Flow Monitor 1 was installed in Sanitary Manhole #3 on the 375 mm sanitary trunk sewer going to the Waste Water Treatment Plant (WWTP). The site receives sanitary flows from a total basin area of 344 ha, of which 304 ha are currently serviced. Sample depth, velocity and flow data from this site is shown in Figure 2.3.

This site shows the expected pattern of daily flows with a large rainfall spike noticeable on 25 June, however, after 10 August velocity data becomes unreliable. The sudden drop in velocity may be due to ragging or debris attached to the probe. This portion of data was not used in the following analysis as it is considered suspect.

2.2.2 Flow Monitor 2

Flow Monitor 2 was installed in Sanitary Manhole #14 on the 375 mm sanitary trunk sewer line crossing 50th Street (Paré Drive) just north of Young Drive. The total basin area contributing flows to this monitoring location is 299 ha, of which 264 ha currently serviced.

This site follows a consistent daily flow pattern with large rainfall spikes corresponding to rainfall events on 25 June, 8 July and 11 and 20 August. After 28 August there is a significant jump in the velocity baseline that may be the result of sensor fouling or drift. This portion of data was not used in the following analysis as it is considered suspect.

2.2.3 Flow Monitor 3

Flow Monitor 3 was installed in Sanitary Manhole #206 on the 300 mm sanitary trunk sewer at Park drive and 56th Street. The total basin area contributing flows to this monitoring location is 65 ha, of which 63 ha currently serviced.

The flow data at this site shows a daily pattern, although the overall profile is influenced by high variability in the velocity data. There is a gap in recorded data from 10 to 28 August.

2.2.4 Flow Monitor 4

Flow Monitor 4 was installed in Sanitary Manhole #143 on the 300 mm sanitary trunk sewer at the Corner of Park drive, north of 56th Street. This monitoring location receives flows from approximately 51 ha in the northwest corner of the Town, of which 49 ha currently serviced.

Due to large fluctuations in velocity patterns over extended periods, data from Monitor 4 was not further analyzed.

2.2.5 Rain Gauge

The rain gauge was installed at the Town office $(5021 - 49^{\text{th}} \text{ Avenue})$ to collect rain data during the flow monitoring period. Daily rainfall data recorded by this rain gauge is shown in Figure 2.4. The main rainfall events that were likely to cause wet weather flow responses in the sewer took place on 25 June and 20 August.

Figure 2.3 Sample Depth, Velocity and Flow Data

Figure 2.4 Daily Rainfall Data

3.0 Sanitary Trunk Sewer Analysis

As of 2006, the Town of Vermilion had a population of 4,036 and a total area of approximately 14 Km². Currently the Town has a mix of residential, commercial, industrial and institutional land uses. There is also some cultivated agricultural land that falls within the municipal limits.

Future growth is expected to include an additional 14 ha of commercial development in the south end of the Town, along Highway 41 and approximately 85 ha of residential development in the west end of the Town. Further development on the Lakeland College campus is also expected to take place at the same time.

The land uses for the existing and future development areas within the Town are shown in Figure 3.1. The figure is based on the Town of Vermilion Land Use By-Law 1-2006. The future growth areas, based on discussion with the Town, are illustrated in Figure 3.2.

3.1 FLOW MONITORING DATA ANALYSIS

A cursory review of the flow data was performed by comparing flows for sites that are upstream and tributary to other sites. The sample flow data presented in Figure 3.3 shows flow magnitude anomalies for Sites 1, 2 and 3 and the high variability in the flow pattern that was previously noted for Site 4. As Site 3 is upstream of Site 2, the flows measured by Monitor 3 are expected to be lower than those measured by Monitor 2. The plot consistently shows Site 3 flows almost double in magnitude to those measured at Site 2.

The flows at Site 3 also appear unrealistically high when compared with the flows recorded at Site 1, as both flows are in the same order of magnitude but Site 1, which is downstream of Site 3, services a significantly larger area. Both anomalies indicate that there may have been some fouling of the flow monitoring probes at Site 3.

The flow data collected from Sites 1, 2 and 3 was then reviewed in order to estimate actual flow generation rates. The first step was the identification and screening of dry weather days for each of these sites.

Dry weather days are days in which sanitary flows are not influenced by rainfall; as such they can be used to determine average dry weather flows at the monitoring sites. In order to isolate the dry weather days, the rainfall data was screened based on the following criteria:

- no rainfall for the day
- less 2.5 mm cumulative rainfall within preceding 24 hours
- less than 10 mm cumulative rainfall within three days
- less than 25 mm cumulative rainfall within five days

For each monitoring site the dry weather days were screened in order to eliminate days which showed unusual flow patterns (outliers). Dry weather days with consistent flow patterns were divided into weekdays, Saturdays and Sundays and their data was averaged to produce typical dry weather days for these three groups.

The resulting daily flows calculated for the monitoring sites are shown in Table 3.1. As previously pointed out Site 3 dry weather flows seem suspiciously high when compared to the downstream sites. They are included in the following tables only for reference purposes.

Monitoring Site	Average Dry Weather Flow (L/s)	Peak Dry Weather Flow (L/s)	Peak Wet Weather Flow (L/s)					
1	9.7	14.1	55.4					
2	5	7.5	61.8					
3	9.5	14.6	27.6					

 Table 3.1
 Measured Flows

The typical dry weather days were then compared to the flows on the days with larger wet weather flows to estimate the I/I component of the flow. With the measured basin areas and estimated populations in those areas, the per capita flow generation and Inflow/Infiltration (I/I) were calculated, as shown in Table 3.2.

Table 3.2 Flow Generation and I/I Calculations

Monitoring Site	Serviced Area (ha)	Population	Average Dry Weather Flow (L/person/day)	l/l (L/s/ha)
1	304	3,767	223	0.23
2	264	2,894	150	0.37
3	63	944	867	0.32

As seen from the tabulated data none of the sites produced flow monitoring data that results in an estimation of average dry weather flows. If data for Site 3 is discarded, the average dry weather flow for Sites 1 and 2 becomes 187 L/person/day and 0.30 L/s/ha for I/I. As the flows shown in Tables 3.1 and 3.2 are based on total flows, they include the flows generated in commercial, industrial and institutional areas. That makes the actual per capita flow generation even lower than the average calculated here. It can be concluded that it is more realistic to use the dry weather wastewater generation rate of 300 L/person/day than the average of Sites 1 and 2, based on one season of flow monitoring. The calculated average I/I value matches the 0.28 L/s/ha recommended by Alberta Environment.

3.2 DESIGN CRITERIA

The design criteria used in this analysis are based on the City of Edmonton Design Standards and the Alberta Environment "Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems":

- Average dry weather wastewater generation rates:
 - Residential average flow = 300 L/person/day
 - Commercial / Industrial / Institutional average flows = $20 \text{ m}^3/\text{day/ha}$ (0.2 L/s/ha)
- Peaking factors used to determine the peak dry weather wastewater flows:
 - Residential Peaking Factor, larger than 1.5 or $PF = 2.6*P^{-0.1}$, where P is the population in thousands
 - Non-residential Peaking Factor, $PF = 10 Q_{avg}^{-0.45}$, with a minimum value of 2.5 and a maximum value of 25, where Q_{avg} is the average flow rate
- Inflow/Infiltration = 0.28 L/s/ha
- Pipe roughness coefficient for all pipes = 0.013

The following design criteria, also based on the City of Edmonton Design Standards, were used for the sanitary trunk upgrades:

- New sanitary sewers not to exceed 86% of pipe capacity.
- Minimum design slopes:

Sewer Diameter (mm)	<minimum design="" slope%<="" th=""></minimum>
200	0.40
250	0.28
300	0.22
375	0.15
450	0.12
525 and Greater	0.10

• Minimum drop at manholes:

Change of direction	Minimum Drop (mm)
0° - 45°	30 mm
45° - 90°	60 mm

• Minimum cover for sanitary sewer: 2.6 m to top of the pipe

Existing population densities were set to match the 2006 census population based on the existing developed residential areas in Town:

- Low and Medium Density Residential = 2.2 cap/lot
- High Density Residential = 240 cap/ha

For future residential growth a density of 15 lots/gross ha was assumed, while keeping the existing population density of 2.2 cap/lot.

3.3 SANITARY TRUNK MODEL

A model of the sanitary trunk main was created using Microsoft Excel in order to calculate the current flow rates and pipe capacities. The direction of flow in the sanitary sewers was used to delineate the sanitary basins of the flow monitors. Out of each sanitary basin, the serviced area was further segregated by type of land occupancy and used to estimate sanitary flow contributions. Portions of sanitary sewer trunk currently operating over capacity were identified. The model was then adjusted to reflect future growth and identify additional trunk portions that are expected to be over capacity as additional development takes place.

3.3.1 Existing Sanitary Sewer Trunk Utilization

The existing sanitary sewer trunk utilization illustrated in Figure 3.4 was determined based on the design flow generation rates and peaking factors. The calculations are based on the 2006 census population.

With the current development and land uses most of the sanitary trunk sewer west of Highway 41 seems to have additional capacity. Upstream of the Highway 41 crossing there are several segments of 300 mm sewer that show utilization values over 86%, with a total estimated length of 315 m. Survey data also indicates a negative slope of -0.2% for the sewer between SanMH327 and SanMH327A.

Downstream of the Highway 41 crossing the eastern half of the trunk is running severely over capacity, as the existing 375 mm line is not large enough to convey all the sanitary flows. Calculated utilization values for this portion of the trunk sewer range between 87% and 311%, with the segments most heavily over utilized being downstream of the Paré Drive crossing.

The utilization of the sanitary trunk sewer is as follows:

- 148 m utilized between 86% and 100%
- 297 m utilized between 100% and 120%
- 1,381 m utilized over 120%

It should also be noted that the existing sewer is shallow in places and does not meet the minimum 2.6 m recommended cover. The sewer utilization calculations are summarized in Table 3.3.

3.3.2 Existing Sanitary Sewer Trunk Utilization with Future Development

The sewer utilization was reviewed with the addition of approximately 85 ha of future residential development in the west end of the Town and 14 ha commercial development along Highway 41. The growth scenario also assumes that additional development on the Lakeland College campus will occupy approximately half of the campus area.

The future residential land use is expected to be of the low or medium density type, with lot densities of approximately 15 units/gross ha and an average population density of 2.2 cap/unit.

The sewer utilization resulting from adding the flows generated by future development to the existing trunk is shown in Figure 3.5. Trunk utilization is expected to increase and affect some segments in the western half of the trunk that previously were operating either below 86% capacity or between 86% and 100%. Downstream of the Paré Drive crossing utilization values for the trunk would run as high as 411%.

The utilization of the sanitary trunk sewer is as follows:

- 154 m utilized between 86% and 100%
- 229 m utilized between 100% and 120%
- 1,678 m utilized over 120%

The sewer utilization calculations are summarized in Table 3.4.

3.3.3 Future Sanitary Sewer Trunk Utilization

The current design requirement for new sanitary sewers is not to exceed 86% of pipe capacity. The overall capacity of the existing sanitary sewer trunk can be increased either by replacing the sewer in place with larger size pipes or by twinning. Although it is possible to build short temporary by-passes and re-route sewage during construction, a parallel sewer is preferable for larger scale upgrades, as the existing sewer can remain in service during construction.

This section identifies on a conceptual basis the sanitary trunk improvements needed for sections that are currently or expected to be exceeding capacity. The intent is not to propose the exact alignment of the sewer improvements, but rather a general framework that can be used in the future to select the most efficient upgrade option. The proposed sewer improvements are prioritized based on the severity of the capacity constraints under both present and future conditions.

Proposed sanitary trunk upgrades west of Highway 41 crossing

The sewer upstream of the Highway 41 crossing can be upgraded by replacing the undersized portions in place. This includes the following improvements, illustrated in Figure 3.8:

Upgrade 1 - 23 m of 525 mm sanitary sewer between sanitary manholes 142 and 143

This is a high priority upgrade. The current 195% sewer overutilization is due to the flat 0.02% slope on the existing 300 mm pipe. The 525 mm upgrade assumes that the vertical alignment is maintained at both manholes. A better hydraulic solution would be replacing both this pipe and the pipe downstream while equalizing the pipe grades.

Upgrade 2 - 62 m of 375 mm sanitary sewer between sanitary manholes 206 and 341

There is only marginal need for this upgrade, as the predicted utilization value for the existing sewer with future development is 89%. This sewer section is located in Vermilion Provincial Park, and has no services directly attached to it. As there are no risks of basement flooding, flows for this portion of the sanitary trunk can be monitored, without replacing the sewer unless it becomes necessary.

Upgrade 3 - 230 m of 375 mm sanitary sewer between sanitary manholes 327 and T101

This is a medium priority upgrade. Current utilization values for this section are below 120%, whereas predicted utilization with future growth would reach 169%. The upgrade is also intended to correct the negative slope for the sewer between SanMH327 and SanMH327A.

This portion of the existing sewer trunk is located in the Vermilion Provincial Park and has no services directly connected to it. Although there is no risk of basement flooding associated with surcharge for this sewer section, there are potential environmental concerns. Due to existing terrain and restricted work spaces it is recommended to replace this entire length of sewer at once. It should be noted that the existing sewer is shallow in this area and appropriate insulation should be provided for the new pipes.

Proposed sanitary trunk upgrades east of Highway 41 crossing

These upgrades are urgent in nature, due to the severe overutilization of the sewer downstream of sanitary manhole 231. Since the entire length of the sewer to the WWTP has to be replaced while keeping the existing trunk in operation, the recommended upgrade philosophy would be to construct a new trunk, parallel to the old one. It is unknown at the moment if two sanitary trunks can fit side by side in the existing sewer alignment, or if terrain and vegetation conditions are too restrictive to allow for the additional sewer. Further investigation is needed to determine the feasibility of the proposed upgrades.

Two options, 4.A and 4.B, were investigated for this upgrade. Both options are based on tying the new sewer with the existing invert at the WWTP, while allowing for the minimum drops at manholes and the minimum pipe slopes. Under these circumstances there are several locations that do not meet the recommended 2.6 m of cover to the top of the pipe. Insulation can be provided to protect these sewer sections against freezing, or pipe grades can be adjusted to provide the minimum cover. In this case a lift station would be required at the WWTP.

Upgrade 4.A - Twinning the sanitary trunk from sanitary manhole 231 to the WWTP

Downstream of the crossing, the sewer can be twinned with an additional sanitary sewer intended to convey to the WWTP the flows tributary to sanitary manhole 231, basin M2. The rest of the sanitary flows will be conveyed to the WWTP by the existing sanitary sewer trunk. Connections between the old and new sewer could be made to make up for the lack of capacity in individual segments of the existing sewer. The estimated sizes and lengths of upgrades are as follows:

- 355 m of 375 mm sanitary sewer
- 475 m of 525 mm sanitary sewer
- 995 m of 600 mm sanitary sewer

The conceptual improvements needed for this option are summarized in Table 3.5 and illustrated in Figures 3.6 and 3.9

Upgrade 4.B - Sanitary trunk replacement from Sanitary Manhole 231 to the WWTP

Prior to twin line design, the general condition of the existing sanitary pipes should be investigated to decide if the sewer should be kept in service. In case the existing trunk is found to be in poor condition, and rehabilitation is not feasible, the proposed twin line can be sized to convey all sanitary flows to the WWTP. Under this scenario, once the new trunk is built, the existing trunk will be abandoned in place. The estimated sizes and lengths of upgrades are as follows:

- 355 m of 375 mm sanitary sewer
- 380 m of 600 mm sanitary sewer
- 995 m of 675 mm sanitary sewer
- 95 m of 750 mm sanitary sewer

The conceptual improvements needed for this option are summarized in Table 3.6 and illustrated in Figures 3.7 and 3.10.

Table 3.3 Existing Sewer Utilization Calculations

PROJECT: TOWN OF VERMILION	Per Capita Flow =	300	L/cap/day	Infiltration Allowance =	0.28	L/s/ha	Population Density
JOB No. : 102414	Commercial Flow =	0.20	L/s/ha	Sag MH Inflow =	0.4	L/s/MH	Low and Medium Density Reside
DATE: 2-Feb-10	Industrial Flow =	0.20	L/s/ha	Pipe Roughness Coeff. =	0.013	(unitless)	High Density Residential
Computed by: SHS	Institutional Flow =	0.20	L/s/ha	Residential Peaking Factor =	2.6P-0.1		
Checked by: BER							

							Resid	lential						Non-	Residenti	al				1/1															
From MH	То МН	Landuse	Added Lots	Total Lots	Pop. Dens.	Added Area	Total Area	Pop. Dens.	Added Pop.	Total Pop.	Peak Factor	Avg. Flow	Added Area	Total Area	Added Avg Flor	Peak w Factor	Tot Avg. Flow	PDWF	General A Sa	Added Total ag MH Sag MH	Sag MH Inflow	PWWF	Size	Slope	Length	Cap.	Full Flow Vel.	PWWF Flow Vel.	PDWF Flow Vel.	PWWF to Cap.	U/S Rim	U/S Inv.	D/S Inv.	U/S Cover	D/S Cover
		Industrial LDR	310	0 310	(cap/lot 2.2	46.81	(ha) 0.00 46.81	(cap/ha	a) 0 682	0 682	1.50 2.70	(L/s) 0.00 2.37	(ha) 1.94	(ha) 1.94 1.94	(L/s) 0.39 0.00	15.31 15.31	(L/s) 0.39 0.39	(L/s) 5.94 12.34	(L/s) 0.54 13.65	0.00 0.00	(L/s) 0.00 0.00	(L/s) 6.48 25.99	(mm)	(%)	(m)	(L/s)	(m/s)	(m/s)	(m/s)	(%)	(m)	(m)	(m)	(m)	(m)
SanMH143 SanMH142	SanMH142 SanMH141	MDR HDR	2 3	312 315 315 315	2.2	0.1 0.25	46.91 47.16 47.16 47.16	240	4 60 0 0	686 746 746 746	2.70 2.68 2.68 2.68	2.38 2.59 2.59 2.59		1.94 1.94 1.94 1.94	0.00 0.00 0.00 0.00	15.31 15.31 15.31 15.31	0.39 0.39 0.39 0.39	12.38 12.88 12.88 12.88	13.68 13.75 13.75 13.75	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	26.05 26.63 26.63 26.63	300 300	0.02 0.84	22.70 35.40	13.68 88.63	0.19 1.25	0.42 1.10	0.22 0.89	195% 30%	611.606 611.492	606.276 606.192	606.272 605.896	5.030 5.000	4.920 5.350
		Commercial Institutional LDR HDR	28 5	315 315 343 348	2.2	7.39 0.51	47.16 47.16 54.55 55.06	240	0 0 62 122	746 746 808 930	2.68 2.68 2.66 2.62	2.59 2.59 2.81 3.23	0.15 4.20	2.09 6.29 6.29 6.29	0.03 0.84 0.00 0.00	14.81 9.02 9.02 9.02	0.42 1.26 1.26 1.26	13.13 18.28 18.80 19.81	13.79 14.97 17.04 17.18	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	26.92 33.25 35.83 36.98													
SanMH141	SanMH206	LDR	6	348 354	2.2	1.08	55.06 56.14		0 13	930 944	2.62 2.62	3.23 3.28		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	19.81 19.91	17.18 17.48	0.00 0.00	0.00 0.00	36.98 37.39	300	0.78	41.20	85.40	1.21	1.16	0.98	43%	611.546	605.896	605.574	5.350	6.200
SanMH206	SanMH341	LDR	2	354 356	2.2	0.36	56.14 56.50		0 4	944 948	2.62 2.61	3.28 3.29		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	19.91 19.95	17.48 17.58	0.00 0.00	0.00 0.00	37.39 37.53	300	3.41	61.80	178.57	2.53	2.00	1.68	21%	612.074	605.574	603.465	6.200	3.540
SanMH341 SanMH341A	SanMH341A SanMH329			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00	0.00	37.53 37.53	300 300	10.60 1.18	69.20 61.50	314.83 105.04	4.45 1.49	3.02 1.36	2.49 1.14	12% 36%	607.305 598.122	603.315 595.972	595.972 595.247	3.690 1.850	1.850 1.750
SanMH329 SanMH328	SanMH328 SanMH340			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00	0.00	37.53 37.53	300 300	0.49	62.00 42.50	67.69 81.48	0.96 1.15	0.98	0.83	55% 46%	597.297 596.723	595.117 594.753	594.813 594.452	1.880 1.670	1.610
SanMH340 SanMH327	SanMH327 SanMH327A			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00	0.00	37.53 37.53	300 300	-0.02	45.90 40.60	74.28 #NUM!	1.05 #NUM!	1.05 #NUM!	0.89 #NUM!	51% #NUM!	596.742 596.063	594.312 594.043	594.043 594.053	2.130 1.720	1.720 2.660
SanMH327A SanMH326	SanMH326 SanMH325			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00 0.00	0.00 0.00	37.53 37.53	300 300	0.55 0.51	31.10 91.60	71.72 69.06	1.01 0.98	1.03 1.00	0.87 0.85	52% 54%	597.013 596.033	594.053 593.873	593.883 593.402	2.660 1.860	1.850 2.000
SanMH325 SanMH342	SanMH342 T100			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00 0.00	0.00 0.00	37.53 37.53	300 300	0.12 0.27	84.60 80.95	33.50 50.25	0.47 0.71	0.54 0.78	0.49 0.67	112% 75%	595.702 595.422	593.382 593.252	593.262 593.036	2.020 1.870	1.860 2.185
T100 T101	T101 SanMH231			356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	19.95 19.95	17.58 17.58	0.00 0.00	0.00 0.00	37.53 37.53	300 500	0.14 0.89	24.75 123.78	35.53 356.22	0.50 1.81	0.57 1.18	0.52 0.98	106% 11%	595.521 595.200	593.036 592.600	593.003 591.500	2.185 2.100	1.897 3.000
		Commercial Industrial		356 356			56.50 56.50		0	948 948	2.61 2.61	3.29 3.29	33.11 2.10	39.40 41.50	6.62 0.42	3.95 3.86	7.88 8.30	39.73 40.63	26.85 27.44	0.00 0.00	0.00 0.00	66.58 68.07													
		Institutional LDR	762	356 1118	2.2	94.92	56.50 151.42		0 1676	948 2624	2.61 2.36	3.29 9.11	69.32	110.82 110.82	13.86 0.00	2.50 2.50	22.16 22.16	64.01 76.92	46.85 73.43	0.00 0.00	0.00	110.86 150.35													
		MDR HDR	8 17	1126 1143	2.2	0.32 1.05	151.74 152.79	240	18 252	2642 2894	2.36 2.34	9.17 10.05		110.82 110.82	0.00	2.50 2.50	22.16 22.16	77.05 78.90	73.52 73.81	0.00	0.00	150.57 152.71													
SanMH231 SanMH230	SanMH230 SanMH228			1143 1143			152.79 152.79		0	2894 2894	2.34 2.34	10.05 10.05		110.82 110.82	0.00 0.00	2.50 2.50	22.16 22.16	78.90 78.90	73.81 73.81	0.00 0.00	0.00 0.00	152.71 152.71	300 300	1.82 3.37	63.05 69.50	130.46 177.52	1.85 2.51	2.09 2.82	1.93 2.44	117% 86%	595.000 595.593	591.078 589.953	589.953 587.608	3.622 5.340	5.340 1.760
SanMH228 SanMH177	SanMH177 SanMH178			1143 1143			152.79 152.79		0	2894 2894	2.34 2.34	10.05 10.05		110.82 110.82	0.00	2.50 2.50	22.16 22.16	78.90 78.90	73.81 73.81	0.00 0.00	0.00	152.71 152.71	300 375	8.85 1.00	100.30 78.50	287.67 175.33	4.07 1.59	4.13 1.79	3.47 1.55	53% 87%	589.668 583.838	587.568 578.578	578.688 577.792	1.800 4.885	4.850 3.125
SanMH178	SanMH179	LDR	22	1143 1165	2.2	4.99	152.79 157.78		0 48	2894 2942	2.34 2.33	10.05 10.22		110.82 110.82	0.00 0.00	2.50 2.50	22.16 22.16	78.90 79.26	73.81 75.21	0.00 0.00	0.00 0.00	152.71 154.46	375	0.21	45.70	80.35	0.73	1.40	0.83	190%	581.292	577.772	577.675	3.145	2.435
SanMH179 SanMH333	SanMH333 SanMH345			1165 1165			157.78 157.78		0	2942 2942	2.33 2.33	10.22 10.22		110.82 110.82	0.00 0.00	2.50 2.50	22.16 22.16	79.26 79.26	75.21 75.21	0.00 0.00	0.00 0.00	154.46 154.46	375 375	0.32 0.21	89.90 133.60	99.18 80.35	0.90 0.73	1.03 1.48	1.00 0.83	156% 192%	580.485 580.190	577.675 577.380	577.390 577.093	2.435 2.435	2.425 2.285
SanMH345 SanMH336	SanMH336 SanMH346			1165 1165			157.78 157.78		0	2942 2942	2.33 2.33	10.22 10.22		110.82 110.82	0.00	2.50 2.50	22.16 22.16	79.26 79.26	75.21 75.21	0.00	0.00	154.46 154.46	375 375	0.09	120.20 124.80	52.60 139.16	0.48 1.26	17.19 1.43	0.54	294% 111%	579.753 580.551	577.093 576.981	576.981 576.200	2.285 3.195	3.195 2.305
SanMH346 SanMH346A	SanMH346A SanMH351			1165 1165			157.78 157.78		0	2942 2942	2.33 2.33	10.22 10.22		110.82 110.82	0.00	2.50 2.50	22.16 22.16	79.26 79.26	75.21 75.21	0.00	0.00	154.46 154.46	375 375	0.15	122.00 60.45	67.91 97.62	0.61	3.57 1.03	0.70	227% 158%	578.880 578.630	576.200 576.020	576.020 575.830	2.305	2.235
SanMH351	SanMH7A	Institutional		1165 1165			157.78 157.78		0	2942 2942	2.33 2.33	10.22 10.22	3.62	110.82 114.44	0.00	2.50 2.50	22.16 22.89	79.26 81.07	75.21 76.22	0.00	0.00	154.46 157.29	375	0.13	60.39	63.22	0.57	5.55	0.64	244%	578.790	575.830	575.770	2.585	2.995
		LDR MDR	364	1529 1530	2.2 2.2	31.75 0.33	189.53 189.86		801 2	3743 3745	2.28	13.00 13.00		114.44 114.44	0.00	2.50 2.50	22.89 22.89	86.83 86.85	85.11 85.20	0.00	0.00	171.95													
SanMH7A	SanMH6	HDR	2	1532 1532		0.09	189.95	240	0	3767	2.28	13.08		114.44 114.44	0.00	2.50	22.89 22.89	87.00 87.00	85.23 85.23	0.00	0.00	172.23	375	0.15	116.00	67.91	0.61	7.81	0.69	254%	579.140	575.770	575.545	2.995	2.730
SanMH6 San MH6A	SanMH6A San MH5			1532 1532			189.95		0	3767	2.28	13.08		114.44 114.44	0.00	2.50	22.89 22.89	87.00 87.00	85.23 85.23	0.00	0.00	172.23	375	0.15	115.10 123.30	67.91 67.91	0.61	7.81	0.69	254% 254%	578.650 578.635	575.545	575.380 575.160	2.730	2.880
SanMH5 SanMH4	SanMH4 SanMH3			1532 1532			189.95		0	3767	2.28	13.08		114.44 114.44	0.00	2.50	22.89	87.00 87.00	85.23 85.23	0.00	0.00	172.23	375	0.16	105.90	70.13	0.63	6.38 4.43	0.71	246% 232%	578.620 578.430	575.160 574.990	574.990 574.800	3.085	3.065
SanmH3	SaniviHZ	Commercial		1532			189.95		0	3767	2.28	13.08	4.25	114.44	0.00	2.50	22.89	87.00 89.13	85.23 86.42	0.00	0.00	172.23	375	0.10	64.63	55.44	0.50	26.75	0.58	311%	577.100	574.800	574.730	1.925	3.645
		Industrial		1532 1532		10 (5	189.95 189.95		0	3767 3767	2.28	13.08 13.08	53.12 6.86	1/1.81	10.62 1.37	2.50	34.36 24.26	115.69 90.43	101.29	0.00	0.00	216.98 193.65													
		LDR MDR	113 11	1645 1656	2.2 2.2	40.42 0.88	230.37 231.25		249 24	4016 4040	2.26 2.26	13.94 14.03		178.67 178.67	0.00	2.50 2.50	24.26 24.26	92.20 92.37	114.53 114.78	0.00	0.00	206.73 207.15													
SanMH2 SanMH1	SanMH1			1656 1656			231.25 231.25		0 0	4040 4040	2.26 2.26	14.03 14.03		178.67 178.67	0.00 0.00	2.50 2.50	22.89 22.89	88.94 88.94	114.78 114.78	0.00 0.00	0.00 0.00	203.72 203.72	375	0.18	95.10	74.39	0.67	14.84	0.76	274%	578.750 577.400	574.730 574.640	574.560	3.645 2.760	2.465
							231.25							178.67																		Invert to WWTP			

PDWF - Peak Dry Weather Flow
 PWWF - Peak Wet Weather Flow
 Based on design standard, PWWF ≤ 0.86% of pipe capacity
 Industrial / Commercial flow generation as per City of Edmonton Design Standards (0.2 L/s/ha)
 Institutional Flow generation rate assumed to be same as Commercial / Industrial
 Survey indicates a negative slope for sewer between SanMH327 and SanMH327A
 Casing inverts used for T101 - SanMH231 (600 mm casing with 500 mm lining)
 Sewer between SanMH230 and SanMH177 is of unknown size, assumed to be 300 mm
 Pipe slopes taken from drawings and calculated from survey data
 Some invert and slope information might contain errors due to combining data from different sources

11. Flow Monitoring manholes

Manhole #	Monitor #
143	4
206	3
177	2
3	1

12. pipes that are over 86% capacity

F[®]CUS

2.2 cap/lot 240 cap/ha

ential

Table 3.4 Existing Sewer Utilization Calculations with Future Development

PROJECT: TOWN OF VERMILION JOB No. : 102414 DATE: 2-Feb-10 Computed by: SHS Checked by: BER	Per Capita Flow = Commercial Flow = Industrial Flow = Institutional Flow =	300 0.20 0.20 0.20	L/cap/day L/s/ha L/s/ha L/s/ha	Infiltration Allowance = Sag MH Inflow = Pipe Roughness Coeff. = Residential Peaking Factor =	0.28 0.4 0.013 2.6P-0.1	L/s/ha L/s/MH (unitless)	Population Density Low and Medium Density Residential High Density Residential
---	---	-----------------------------	---	--	----------------------------------	--------------------------------	--

Date Date Date Date Da								Resi	dential					1	Non-F	esidentia	I				1/1															
Name Name <th< th=""><th>From MH</th><th>To MH</th><th>Landuse</th><th>Added Lots</th><th>Total Lots</th><th>Pop. Dens. (cap/lot)</th><th>Added Area) (ha)</th><th>Total Area (ha)</th><th>Pop. Dens. (cap/ha</th><th>Added Pop.</th><th>Total Pop.</th><th>Peak Factor</th><th>Avg. Flow (L/s)</th><th>Added Area (ha)</th><th>Total Area (ha)</th><th>Added Avg Flov (L/s)</th><th>Peak 1 w Factor</th><th>Fot Avg. Flow (L/s)</th><th>PDWF (L/s)</th><th>General (S (L/s)</th><th>Added Total Sag MH Sag MH</th><th>Sag MH Inflow (L/s)</th><th>PWWF (L/s)</th><th>Size (mm)</th><th>Slope (%)</th><th>Length (m)</th><th>Cap. (L/s)</th><th>Full Flow Vel. (m/s)</th><th>PWWF Flow Vel. (m/s)</th><th>PDWF Flow Vel. (m/s)</th><th>PWWF to Cap. (%)</th><th>U/S Rim (m)</th><th>U/S Inv. (m)</th><th>D/S Inv. (m)</th><th>U/S Cover (m)</th><th>D/S Cover (m)</th></th<>	From MH	To MH	Landuse	Added Lots	Total Lots	Pop. Dens. (cap/lot)	Added Area) (ha)	Total Area (ha)	Pop. Dens. (cap/ha	Added Pop.	Total Pop.	Peak Factor	Avg. Flow (L/s)	Added Area (ha)	Total Area (ha)	Added Avg Flov (L/s)	Peak 1 w Factor	Fot Avg. Flow (L/s)	PDWF (L/s)	General (S (L/s)	Added Total Sag MH Sag MH	Sag MH Inflow (L/s)	PWWF (L/s)	Size (mm)	Slope (%)	Length (m)	Cap. (L/s)	Full Flow Vel. (m/s)	PWWF Flow Vel. (m/s)	PDWF Flow Vel. (m/s)	PWWF to Cap. (%)	U/S Rim (m)	U/S Inv. (m)	D/S Inv. (m)	U/S Cover (m)	D/S Cover (m)
barket barkt barkt barkt <th>SanMH143 SanMH142</th> <th>SanMH142 SanMH141</th> <th>Industrial LDR MDR HDR Commercial Institutional LDR</th> <th>1670 2 3</th> <th>0 1670 1672 1675 1675 1675 1675 1675 1675</th> <th>2.2 2.2 2.2</th> <th>46.81 0.1 0.25 7.39</th> <th>0.00 46.81 46.91 47.16 47.16 47.16 47.16 47.16 54.55</th> <th>240</th> <th>0 3674 4 60 0 0 0 0 62</th> <th>0 3674 3678 3738 3738 3738 3738 3738 3738 3738</th> <th>1.50 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.2</th> <th>0.00 12.76 12.77 12.98 12.98 12.98 12.98 12.98 12.98 13.19</th> <th>1.94 0.15 4.20</th> <th>1.94 1.94 1.94 1.94 1.94 1.94 2.09 6.29 6.29</th> <th>0.39 0.00 0.00 0.00 0.00 0.00 0.03 0.84 0.00</th> <th>15.31 15.31 15.31 15.31 15.31 15.31 14.81 9.02 9.02</th> <th>0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.42 1.26 1.26</th> <th>5.94 35.06 35.09 35.52 35.52 35.52 35.77 40.93 41.36</th> <th>0.54 13.65 13.68 13.75 13.75 13.75 13.79 14.97 17.04</th> <th>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0</th> <th>0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0</th> <th>6.48 48.71 48.77 49.27 49.27 49.27 49.56 55.89 58.40</th> <th>300 300</th> <th>0.02 0.84</th> <th>22.70 35.40</th> <th>13.68 88.63</th> <th>0.19 1.25</th> <th>27.83 1.29</th> <th>2.92 1.18</th> <th>360% 56%</th> <th>611.606 611.492</th> <th>606.276 606.192</th> <th>606.272 605.896</th> <th>5.030 5.000</th> <th>4.920 5.350</th>	SanMH143 SanMH142	SanMH142 SanMH141	Industrial LDR MDR HDR Commercial Institutional LDR	1670 2 3	0 1670 1672 1675 1675 1675 1675 1675 1675	2.2 2.2 2.2	46.81 0.1 0.25 7.39	0.00 46.81 46.91 47.16 47.16 47.16 47.16 47.16 54.55	240	0 3674 4 60 0 0 0 0 62	0 3674 3678 3738 3738 3738 3738 3738 3738 3738	1.50 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.2	0.00 12.76 12.77 12.98 12.98 12.98 12.98 12.98 12.98 13.19	1.94 0.15 4.20	1.94 1.94 1.94 1.94 1.94 1.94 2.09 6.29 6.29	0.39 0.00 0.00 0.00 0.00 0.00 0.03 0.84 0.00	15.31 15.31 15.31 15.31 15.31 15.31 14.81 9.02 9.02	0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.42 1.26 1.26	5.94 35.06 35.09 35.52 35.52 35.52 35.77 40.93 41.36	0.54 13.65 13.68 13.75 13.75 13.75 13.79 14.97 17.04	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.48 48.71 48.77 49.27 49.27 49.27 49.56 55.89 58.40	300 300	0.02 0.84	22.70 35.40	13.68 88.63	0.19 1.25	27.83 1.29	2.92 1.18	360% 56%	611.606 611.492	606.276 606.192	606.272 605.896	5.030 5.000	4.920 5.350
c particle Substrat LD C Total C <th>SanMH141</th> <th>SanMH206</th> <th>HDR</th> <th>5</th> <th>1708</th> <th></th> <th>0.51</th> <th>55.06 55.06</th> <th>240</th> <th>0</th> <th>3922 3922</th> <th>2.27</th> <th>13.62</th> <th></th> <th>6.29 6.29</th> <th>0.00</th> <th>9.02</th> <th>1.26</th> <th>42.23</th> <th>17.18</th> <th>0.00</th> <th>0.00</th> <th>59.41 59.41</th> <th>300</th> <th>0.78</th> <th>41.20</th> <th>85.40</th> <th>1.21</th> <th>1.31</th> <th>1.20</th> <th>70%</th> <th>611.546</th> <th>605.896</th> <th>605.574</th> <th>5.350</th> <th>6.200</th>	SanMH141	SanMH206	HDR	5	1708		0.51	55.06 55.06	240	0	3922 3922	2.27	13.62		6.29 6.29	0.00	9.02	1.26	42.23	17.18	0.00	0.00	59.41 59.41	300	0.78	41.20	85.40	1.21	1.31	1.20	70%	611.546	605.896	605.574	5.350	6.200
Label-All Link 2 1/1 2 2/2 0.5 6.6 0.0 0.5 0.0 0.5 0.0<	SanMH206	SanMH341	LDR	6	1714 1714	2.2	1.08	56.14 56.14		13 0	3936 3936	2.27 2.27	13.67 13.67		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	42.33 42.33	17.48 17.48	0.00 0.00	0.00 0.00	59.81 59.81	300	3.41	61.80	178.57	2.53	2.28	2.07	33%	612.074	605.574	603.465	6.200	3.540
Image: Note of the stand	SanMH341 SanMH341A SanMH329 SanMH328 SanMH327 SanMH327 SanMH327 SanMH326 SanMH326 SanMH326 T100 T101	SanMH341A SanMH329 SanMH328 SanMH327A SanMH327A SanMH326 SanMH325 SanMH325 SanMH320 T100 T101 SanMH231	LDR Commercial Industrial Institutional LDR	2 762 37	1716 1716 1716 1716 1716 1716 1716 1716	2.2	94.92 0 32	$\begin{array}{c} 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 56.50\\ 151.42\\ 151.74\end{array}$		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1676 81	3940 3940 3940 3940 3940 3940 3940 3940	2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27	13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68	47.11 2.10 99.58	6.29 6.29 6.29 6.29 6.29 6.29 6.29 6.29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02	1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 108.55 120.21	17.58 17.59 1.36 59.24 85.91	0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	59.94 59.94	300 300 300 300 300 300 300 300 300 300	10.60 1.18 0.49 0.71 0.59 -0.02 0.55 0.51 0.12 0.27 0.14 0.89	69.20 61.50 62.00 42.50 45.90 40.60 31.10 91.60 84.60 80.95 24.75 123.78	314.83 105.04 67.69 81.48 74.28 #NUM! 71.72 69.06 33.50 50.25 35.53 356.22	4.45 1.49 0.96 1.15 1.05 #NUM! 1.01 0.98 0.47 0.71 0.50 1.81	3.43 1.53 1.08 1.26 1.17 #NUM! 1.14 1.14 0.71 0.80 0.64 1.35	3.13 1.41 1.01 1.16 1.08 #NUM! 1.06 1.03 0.53 0.80 0.57 1.23	19% 57% 89% 74% 81% #NUM! 84% 87% 179% 119% 169% 17%	607.305 598.122 597.297 596.723 596.063 597.013 596.033 595.702 595.422 595.521 595.200	603.315 595.972 595.117 594.753 594.053 594.063 593.873 593.252 593.036 592.600	595.972 595.247 594.813 594.452 594.053 593.883 593.802 593.262 593.036 593.003 591.500	3.690 1.850 1.880 1.670 2.130 1.720 2.660 1.860 2.020 1.870 2.185 2.100	1.850 1.750 1.610 1.990 1.720 2.660 1.850 2.000 1.860 2.185 1.887 3.000
SamtH130 CLW 22 2300 2.2 4.90 0.776 9 0.00 2	SanMH231 SanMH230 SanMH228 SanMH177 SanMH178	SanMH230 SanMH228 SanMH177 SanMH178 SanMH179	HDR	17	2532 2532 2532 2532 2532 2532 2532	2.2	1.05	151.74 152.79 152.79 152.79 152.79 152.79 152.79	240	252 0 0 0 0 0	5950 5950 5950 5950 5950 5950	2.18 2.18 2.18 2.18 2.18 2.18 2.18 2.18	20.66 20.66 20.66 20.66 20.66 20.66		155.08 155.08 155.08 155.08 155.08 155.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00	2.50 2.50 2.50 2.50 2.50 2.50 2.50	31.02 31.02 31.02 31.02 31.02 31.02 31.02 31.02	122.48 122.48 122.48 122.48 122.48 122.48 122.48	86.20 86.20 86.20 86.20 86.20 86.20 86.20	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	208.68 208.68 208.68 208.68 208.68 208.68	300 300 300 375 375	1.82 3.37 8.85 1.00 0.21	63.05 69.50 100.30 78.50 45.70	130.46 177.52 287.67 175.33 80.35	1.85 2.51 4.07 1.59 0.73	2.17 2.84 4.44 1.79 10.96	2.10 2.71 3.91 1.72 0.82	160% 118% 73% 119% 260%	595.000 595.593 589.668 583.838 581.292	591.078 589.953 587.568 578.578 577.772	589.953 587.608 578.688 577.792 577.675	3.622 5.340 1.800 4.885 3.145	5.340 1.760 4.850 3.125 2.435
MUR 1 2 919 2.2 0.33 189.86 2 6 801 2.15 2.3.82 158.70 0.00 2.50 31.74 130.40 97.62 0.00 0.00 227.81 375 0.15 116.06 67.91 0.61 55.19 1.23 335% 578.60 575.545 575.340 275.840 575.340 275.840 578.60 578.60 575.840 575.840 578.60 578.60 578.60 578.60 578.60 575.840 578.60	SanMH179 SanMH333 SanMH345 SanMH346 SanMH346A SanMH351	SanMH333 SanMH345 SanMH336 SanMH346 SanMH346A SanMH351 SanMH7A	Institutional LDR	364	2554 2554 2554 2554 2554 2554 2554 2554	2.2	4.99 31.75	157.78 157.78 157.78 157.78 157.78 157.78 157.78 157.78 157.78 157.78 157.78		48 0 0 0 0 0 0 801	5998 5998 5998 5998 5998 5998 5998 5998	2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17	20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83 20.83	3.62	155.08 155.08 155.08 155.08 155.08 155.08 155.08 155.08 155.08 158.70 158.70	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	31.02 31.02 31.02 31.02 31.02 31.02 31.02 31.02 31.74 31.74	122.81 122.81 122.81 122.81 122.81 122.81 122.81 122.81 122.81 124.62 130.02	87.60 87.60 87.60 87.60 87.60 87.60 87.60 87.60 88.61 97.50 97.50	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	210.41 210.41 210.41 210.41 210.41 210.41 210.41 210.41 210.41 213.23 227.53 227.54	375 375 375 375 375 375 375 375	0.32 0.21 0.09 0.63 0.15 0.31 0.13	89.90 133.60 120.20 124.80 122.00 60.45 60.39	99.18 80.35 52.60 139.16 67.91 97.62 63.22	0.90 0.73 0.48 1.26 0.61 0.88 0.57	3.24 11.63 134.41 1.42 32.20 3.54 48.73	1.01 0.82 3.33 1.42 0.96 0.99 1.22	212% 262% 400% 151% 310% 216% 333%	580.485 580.190 579.753 580.551 578.880 578.630 578.790	577.675 577.380 577.093 576.981 576.200 576.020 575.830	577.390 577.093 576.981 576.200 576.020 575.830 575.770	2.435 2.435 2.285 3.195 2.305 2.235 2.585	2.425 2.285 3.195 2.305 2.235 2.585 2.645
LDR MDR 113 3034 2.2 40.42 230.37 249 7071 2.14 24.55 222.93 0.00 2.50 44.59 163.96 126.92 0.00 290.89 291.29 375 0.18 95.10 74.39 0.67 166.01 3.16 392% 578.750 574.730 574.560 3.645 2.700 SanMH1 3045 2.23 0.24 2.44 2.464 222.93 0.00 2.50 44.59 164.12 127.17 0.00 0.00 291.29 375 0.18 95.10 74.39 0.67 166.01 3.16 392% 578.750 574.730 574.640 2.700 2.700 SanMH1 3045 2.24 2.14 2.464 222.93 0.00 2.50 44.59 164.12 127.17 0.00 0.00 291.29 375 0.18 95.10 74.39 0.67 166.01 3.16 392% 577.400 574.640 2.760 2.760 2.760 2.760 2.760 2.760 2.760 2.760 2.760 2.760 2.760	SanMH7A SanMH6 San MH6A SanMH5 SanMH4 SanMH3	SanMH6 SanMH6A SanMH5 SanMH4 SanMH3 SanMH2	Commercial Industrial Institutional	2	2919 2921 2921 2921 2921 2921 2921 2921	2.2	0.33	189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95 189.95	240	22 0 0 0 0 0 0 0 0 0 0 0	6823 6823 6823 6823 6823 6823 6823 6823	2.15 2.15 2.15 2.15 2.15 2.15 2.15 2.15	23.62 23.69 23.69 23.69 23.69 23.69 23.69 23.69 23.69 23.69 23.69 23.69 23.69	4.25 53.12 6.86	138.70 158.70 158.70 158.70 158.70 158.70 158.70 158.70 162.95 216.07 222.93	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 31.74 32.59 43.21 44.59	130.04 130.18 130.18 130.18 130.18 130.18 130.18 130.18 130.18 132.31 158.87 162.30	97.60 97.62 97.62 97.62 97.62 97.62 97.62 97.62 97.62 98.81 113.69 115.61	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	227.84 227.81 227.81 227.81 227.81 227.81 227.81 227.81 231.12 272.55 277.90	375 375 375 375 375 375 375	0.15 0.15 0.15 0.16 0.18 0.10	116.00 115.10 123.30 105.90 105.94 64.63	67.91 67.91 67.91 70.13 74.39 55.44	0.61 0.61 0.63 0.67 0.50	55.19 55.19 55.19 45.87 32.54 167.77	1.23 1.23 1.23 1.10 0.94 3.65	335% 335% 335% 325% 306% 411%	578.790 578.650 578.635 578.620 578.430 577.100	575.820 575.545 575.380 575.160 574.990 574.800	575.545 575.380 575.160 574.990 574.800 574.730	2.595 2.730 2.880 3.085 3.065 1.925	2.730 2.880 3.085 3.065 1.925 3.645
Totals 231.20 /096 222.93 44.59 WWTP	SanMH2 SanMH1 Totals	SanMH1	LDR MDR	113 11	3034 3045 3045 3045	2.2 2.2	40.42 0.88	230.37 231.25 231.25 231.25 231.25		249 24 0 0	7071 7096 7096 7096 7096	2.14 2.14 2.14 2.14	24.55 24.64 24.64 24.64		222.93 222.93 222.93 222.93 222.93	0.00 0.00 0.00 0.00	2.50 2.50 2.50 2.50	44.59 44.59 44.59 44.59 44.59	163.96 164.12 164.12 164.12	126.92 127.17 127.17 127.17	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	290.89 291.29 291.29 291.29	375	0.18	95.10	74.39 0.00	0.67	166.01	3.16	392%	578.750 577.400	574.730 574.640 invert to WWTP	574.560	3.645 2.760	2.465

Notes:

 PDWF - Peak Dry Weather Flow
 PWWF - Peak Wet Weather Flow
 Based on design standard, PWWF ≤ 0.86% of pipe capacity
 Industrial / Commercial flow generation as per City of Edmonton Design Standards (0.2 L/s/ha)
 Institutional Flow generation rate assumed to be same as Commercial / Industrial
 Survey indicates a negative slope for sewer between SanMH327 and SanMH327A
 Casing inverts used for T101 - SanMH231 (600 mm casing with 500 mm lining)
 Sewer between SanMH230 and SanMH177 is of unknown size, assumed to be 300 mm
 Pipe slopes taken from drawings and calculated from survey data
 Some invert and slope information might contain errors due to combining data from different sources

11. Flow Monitoring manholes

Manhole #	Monitor #
143	4
206	3
177	2
3	1

12. pipes that are over 86% capacity

2.2 cap/lot 240 cap/ha

Table 3.5 Upgraded Sewer Utilization Calculations - Twinning

PROJECT: TOWN OF VERMILION JOB No. : 102414 DATE: 2-Feb-10 Computed by: SHS Checked by: BER	Per Capita Flow = Commercial Flow = Industrial Flow = Institutional Flow =	300 L/cap/day 0.20 L/s/ha 0.20 L/s/ha 0.20 L/s/ha	Infiltration Allowance = Sag MH Inflow = Pipe Roughness Coeff. = Residential Peaking Factor =	0.28 0.4 0.013 2.6P-0.1	L/s/ha L/s/MH (unitless)	Population Density Low and Medium Density Resider High Density Residential
---	---	--	--	----------------------------------	--------------------------------	--

							Resid	dential						Non-F	Residentia					I/I																
From MH	To MH	Landuse	Added Lots	Total Lots	Pop. Dens. (cap/lot	Added Area (ha)	l Total Area (ha)	Pop. Dens. (cap/ha	Added Pop. a)	I Total Pop.	Peak Factor	Avg. Flow (L/s)	Added Area (ha)	Total Area (ha)	Added Avg Flo (L/s)	Peak w Facto	Tot Avg r Flow (L/s)	g. PDWF (L/s)	Gener	al Added To Sag MH Sag	al Sag MH Infl (L	MH low /s)	PWWF (L/s)	Size (mm)	Slope (%)	Length (m)	Cap. (L/s)	Full Flow Vel. (m/s)	PWWF Flow Vel. (m/s)	PDWF Flow Vel. (m/s)	PWWF to Cap. (%)	U/S Rim (m)	U/S Inv. (m)	D/S Inv. (m)	U/S Cover (m)	D/S Cover (m)
SanMH143 SanMH142 SanMH141	SanMH142 SanMH141 SanMH206	Industrial LDR MDR HDR <i>Upgrade 1</i> Commercial Institutional LDR HDR	1670 2 3 28 5	0 1670 1672 1675 1675 1675 1675 1675 1703 1708 1708	2.2 2.2 2.2	46.81 0.1 0.25 7.39 0.51	0.00 46.81 46.91 47.16 47.16 47.16 47.16 47.16 54.55 55.06 55.06	240 240	0 3674 4 60 0 0 0 0 0 62 122 0	0 3674 3678 3738 3738 3738 3738 3738 3738 3800 3922 3922	1.50 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.2	0.00 12.76 12.77 12.98 12.98 12.98 12.98 12.98 12.98 13.19 13.62 13.62	1.94 0.15 4.20	1.94 1.94 1.94 1.94 1.94 2.09 6.29 6.29 6.29 6.29	0.39 0.00 0.00 0.00 0.00 0.03 0.84 0.00 0.00 0.00	15.31 15.31 15.31 15.31 15.31 15.31 14.81 9.02 9.02 9.02 9.02 9.02	0.39 0.39 0.39 0.39 0.39 0.39 0.42 1.26 1.26 1.26 1.26	5.94 35.06 35.09 35.52 35.52 35.52 35.77 40.93 41.36 42.23 42.23	0.54 13.65 13.68 13.75 13.75 13.75 13.79 14.97 17.04 17.18 17.18	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00	6.48 48.71 49.27 49.27 49.27 49.27 49.56 55.89 58.40 59.41 59.41	525 300 300	<i>0.0</i> 2 0.84 0.78	22.70 35.40 41.20	<i>60.82</i> 88.63 85.40	0.28 1.25 1.21	<i>0.31</i> 1.29 1.31	<i>0.29</i> 1.18 1.20	81% 56% 70%	<i>611.606</i> 611.492 611.546	606.276 606.192 605.896	606.272 605.896 605.574	<i>4.805</i> 5.000 5.350	4.695 5.350 6.200
SanMH206	SanMH341	LDR	6	1714 1714	2.2	1.08	56.14 56.14		13 0	3936 3936	2.27 2.27	13.67 13.67		6.29 6.29	0.00 0.00	9.02 9.02	1.26 1.26	42.33 42.33	17.48 17.48	8 0.0 8 0.0	0 0.0 0 0.0	00 00	59.81 59.81	300	3.41	61.80	178.57	2.53	2.28	2.07	33%	612.074	605.574	603.465	6.200	3.540
SanMH3411 SanMH341A SanMH329 SanMH328 SanMH327 SanMH327 SanMH327 SanMH325 SanMH325 SanMH325 T100-R T101	SanMH341A SanMH329 SanMH328 SanMH340 SanMH340 SanMH327A SanMH326 SanMH325 SanMH342 T100-R T101 SanMH231	LDR Upgrade 2 Upgrade 3 Upgrade 3 Upgrade 3 Upgrade 3 Upgrade 3	2	1716 1716 1716 1716 1716 1716 1716 1716	2.2	0.36	56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50 56.50		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3940 3940 3940 3940 3940 3940 3940 3940	2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27	13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68 13.68		6.29 6.29 6.29 6.29 6.29 6.29 6.29 6.29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02	1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36 42.36	17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58 17.58	3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 4 0.1 4 0.1 4 0.1 4 0.1 4 0.1 4 0.1 4 0.1 4 0.1 4 0.1 5 0.1	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00	59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94 59.94	300 300 375 300 300 375 375 375 375 375 375 375 375 500	10.60 1.18 0.49 0.71 0.59 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.89	69.20 61.50 62.00 42.50 40.60 31.10 91.60 84.60 80.95 24.75 123.78	314.83 105.04 122.73 81.48 74.28 97.23 97.23 97.23 97.23 97.23 97.23 97.23 97.66 356.22	4.45 1.49 1.11 1.15 1.05 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0	3.43 1.53 1.10 1.26 1.17 0.93 0.93 0.93 0.93 0.93 0.93 1.35	3.13 1.41 1.01 1.16 1.08 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0	19% 57% 49% 74% 81% 62% 62% 62% 62% 62% 61% 17%	607.305 598.122 597.297 596.723 596.723 596.063 597.013 596.033 595.702 595.422 595.521 595.200	603.315 595.972 595.117 594.753 594.312 594.043 593.86 593.73 593.42 593.13 592.85 592.600	595.972 595.247 594.813 594.452 594.043 593.92 593.76 593.45 593.16 592.88 592.775 591.500	3.690 1.850 1.805 1.670 2.130 1.645 2.780 1.925 1.906 1.916 2.294 2.100	1.850 1.750 1.535 1.990 1.720 2.720 1.895 1.876 1.886 2.264 2.050 3.000
SanMH231 SanMH TW1 SanMH TW2 SanMH TW3 SanMH TW5 SanMH TW6 SanMH TW7 SanMH TW10 SanMH TW10 SanMH TW11 SanMH TW11 SanMH TW15 SanMH TW14 SanMH TW15 SanMH TW16 SanMH TW17	SanMH TW1 SanMH TW2 SanMH TW3 SanMH TW4 SanMH TW5 SanMH TW7 SanMH TW7 SanMH TW10 SanMH TW10 SanMH TW11 SanMH TW12 SanMH TW15 SanMH TW15 SanMH TW15 SanMH TW15 SanMH TW15 SanMH TW17	Commercial Industrial Institutional LDR MDR HDR Upgrade 4.A Upgrade 4.A	762 37 17	0 0 762 799 816 816 816 816 816 816 816 816 816 816	2.2 2.2	94.92 0.32 1.05	0.00 0.00 94.92 95.24 96.29 96.	240	0 0 1676 81 252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1676 2010 2010 2010 2010 2010 2010 2010 201	1.50 1.50 2.47 2.46 2.42 2.42 2.42 2.42 2.42 2.42 2.42	0.00 0.00 5.82 6.10 6.98	47.11 2.10 99.58	47.11 49.21 148.79	9.42 0.42 19.92 0.00 0.0	3.64 3.57 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	9.42 9.84 29.76	34.34 35.17 74.40 88.37 91.32	$\begin{array}{c} 13.19\\ 13.78\\ 41.66\\ 68.24\\ 68.33\\ 68.62\\ 68$		0 0.0 0 0.0	00 00 00 00 00 00 00 00 00 00 00 00 00	47.53 48.95 116.06 157.01 159.94	375 375 375 525 525 525 525 525 525 525 525 600 600 600 600 600 600 600 600 600	2.00 5.05 4.00 3.80 0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.1	50 755 115 95 95 95 95 95 95 75 115 120 110 65 95	247.95 394.01 350.66 341.78 192.33 192.33 192.33 194.17 194.17 194.17 194.17 194.17 194.17 194.17 194.17	2.25 3.57 3.17 3.09 0.89 0.89 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	2.38 3.38 3.10 3.04 0.99 0.99 0.99 0.77 0.77 0.77 0.77 0.77	2.07 2.90 2.67 2.62 0.88 0.88 0.88 0.88 0.68 0.68 0.68 0.68	65% 41% 46% 47% 83% 83% 83% 83% 82% 82% 82% 82% 82% 82% 82% 82% 82%	595.0 595.6 589.7 583.8 579.6 580.1 580.0 579.8 579.4 578.8 579.4 578.8 579.4 578.6 578.6 578.6 578.6 578.6 578.4 578.4 578.4 578.4	591.078 590.05 586.23 576.86 576.86 576.64 576.64 575.94 575.81 575.89 575.58 575.44 575.29 575.14 575.29 575.14 575.46 574.77	590.08 586.26 581.63 576.23 576.45 576.45 575.47 575.47 575.47 575.547 575.547 575.53 574.89 574.80 574.80 574.84 invert to WWTP	3.547 5.177 3.044 1.824 2.755 2.755 3.055 3.055 3.395 2.950 2.605 2.950 2.615 2.745 2.880 2.880 2.880 2.880 2.890 2.035	5.147 3.015 1.794 2.015 2.725 2.805 3.045 3.395 2.920 2.475 2.930 2.585 2.715 2.850 2.800 3.260 2.005
SanMH231 SanMH230 SanMH228 SanMH177 SanMH178	SanMH230 SanMH228 SanMH177 SanMH178 SanMH179	LDR	22	1716 1716 1716 1716 1716 1738	2.2	4.99	56.50 56.50 56.50 56.50 56.50 61.49		0 0 0 0 48	3940 3940 3940 3940 3940 3988	2.27 2.27 2.27 2.27 2.27 2.27 2.26	13.68 13.68 13.68 13.68 13.68 13.85		6.29 6.29 6.29 6.29 6.29 6.29 6.29	0.00 0.00 0.00 0.00 0.00 0.00	9.02 9.02 9.02 9.02 9.02 9.02	1.26 1.26 1.26 1.26 1.26 1.26	42.36 42.36 42.36 42.36 42.36 42.70	17.58 17.58 17.58 17.58 17.58 17.58 18.98	3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1	0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	00 00 00 00 00 00	59.94 59.94 59.94 59.94 59.94 59.94 61.68	300 300 300 375 375	1.82 3.37 8.85 1.00 0.21	63.05 69.50 100.30 78.50 45.70	130.46 177.52 287.67 175.33 80.35	1.85 2.51 4.07 1.59 0.73	1.81 2.27 3.21 1.44 0.80	1.65 2.06 2.91 1.31 0.74	46% 34% 21% 34% 75%	595.000 595.593 589.668 583.838 581.292	591.078 589.953 587.568 578.578 577.772	589.953 587.608 578.688 577.792 577.675	3.622 5.340 1.800 4.885 3.145	5.340 1.760 4.850 3.125 2.435
SanMH179 SanMH333 SanMH345 SanMH346 SanMH346A SanMH346A SanMH351	SanMH333 SanMH345 SanMH336 SanMH346 SanMH346A SanMH351 SanMH7A	Institutional LDR MDR	364	1738 1738 1738 1738 1738 1738 1738 1738	2.2 2.2	31.75 0.33	61.49 61.49 61.49 61.49 61.49 61.49 61.49 61.49 93.24 93.27		0 0 0 0 0 0 0 0 0 801 2	3988 3988 3988 3988 3988 3988 3988 3988	2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 16.63 16.64	3.62	6.29 6.29 6.29 6.29 6.29 6.29 6.29 6.29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00	9.02 9.02 9.02 9.02 9.02 9.02 9.02 9.02	1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26	42.70 42.70 42.70 42.70 42.70 42.70 42.70 42.70 45.92 51.54 51.55	18.98 18.98 18.98 18.98 18.98 18.98 18.98 18.98 19.99 28.88 28.97	3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 4 0.1 5 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00 00 00 00 00 00 00 00 00 00 00 00	61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 61.68 65.91 80.42 80.53 80.53	375 375 375 375 375 375 375 375	0.32 0.21 0.09 0.63 0.15 0.31 0.13	89.90 133.60 120.20 124.80 122.00 60.45 60.39	99.18 80.35 52.60 139.16 67.91 97.62 63.22	0.90 0.73 0.48 1.26 0.61 0.88 0.57	0.95 0.80 0.54 1.22 0.70 0.93 0.65	0.86 0.74 0.53 1.11 0.65 0.85 0.61	62% 77% 117% 44% 91% 63% 98%	580.485 580.190 579.753 580.551 578.880 578.630 578.790	577.675 577.380 577.093 576.981 576.200 576.020 575.830	577.390 577.093 576.981 576.200 576.020 575.830 575.770	2.435 2.435 2.285 3.195 2.305 2.235 2.585	2.425 2.285 3.195 2.305 2.235 2.585 2.645
SanMH7A SanMH6	SanMH6 SanMH6A	ΠUK	2	2105 2105 2105		0.09	93.66 93.66 93.66	240	22 0 0	4813 4813 4813	2.22 2.22 2.22	16.71 16.71 16.71		9.91 9.91 9.91	0.00 0.00 0.00	7.35 7.35 7.35	1.98 1.98 1.98	51.70 51.70 51.70	29.00 29.00 29.00) 0.1) 0.1	0 0.0 0 0.0 0 0.0	00 00 00	80.70 80.70 80.70	375 375	0.15 0.15	116.00 115.10	67.91 67.91	0.61 0.61	0.69 0.69	0.68 0.68	119% 119%	578.790 578.650	575.820 575.545	575.545 575.380	2.595 2.730	2.730 2.880

<u>F#CUS</u>

2.2 cap/lot 240 cap/ha

ntial

Table 3.5 Upgraded Sewer Utilization Calculations - Twinning

PROJECT: TOWN OF VERMILION JOB No. : 102414 DATE: 2-Feb-10 Computed by: SHS Checked by: BER	Per Capita Flow = Commercial Flow = Industrial Flow = Institutional Flow =	300 L/cap/day 0.20 L/s/ha 0.20 L/s/ha 0.20 L/s/ha	Infiltration Allowance = Sag MH Inflow = Pipe Roughness Coeff. = Residential Peaking Factor =	0.28 L/s/ha 0.4 L/s/MH 0.013 (unitless) 2.6P-0.1	Population Density Low and Medium Density Reside High Density Residential
---	---	--	--	---	---

							Resid	dential						Non-F	Residential						1/1															
																												Full	PWWF	PDWF						
From	То	Landuse	Added	Total	Pop.	Added	Total	Pop. Ad	ded To	tal I	Peak Av	vg.	Added	Total	Added	Peak	Tot Avg	PDWF	Genera	Added	Total	Sag MH	PWWF	Size	Slope	Length	Cap.	Flow	Flow	Flow	PWWF	U/S	U/S	D/S	U/S	D/S
MH	MH		Lots	Lots	Dens.	Area	Area	Dens. P	op. Po	op. F	actor Fl	ow	Area	Area	Avg Flow	v Factor	r Flow			Sag MH	Sag MH	Inflow						Vel.	Vel.	Vel.	to Cap.	Rim	Inv.	Inv.	Cover	Cover
					(cap/lot	t) (ha)	(ha)	(cap/ha)			(L	/s)	(ha)	(ha)	(L/s)		(L/s)	(L/s)	(L/s)			(L/s)	(L/s)	(mm)	(%)	(m)	(L/s)	(m/s)	(m/s)	(m/s)	(%)	(m)	(m)	(m)	(m)	(m)
San MH6A	San MH5			2105			93.66		0 48	313 2	2.22 16	.71		9.91	0.00	7.35	1.98	51.70	29.00		0.00	0.00	80.70	375	0.15	123.30	67.91	0.61	0.69	0.68	119%	578.635	575.380	575.160	2.880	3.085
SanMH5	SanMH4			2105			93.66		0 48	313 2	2.22 16	.71		9.91	0.00	7.35	1.98	51.70	29.00		0.00	0.00	80.70	375	0.16	105.90	70.13	0.63	0.72	0.69	115%	578.620	575.160	574.990	3.085	3.065
SanMH4	SanMH3			2105			93.66		0 48	313 2	2.22 16	.71		9.91	0.00	7.35	1.98	51.70	29.00		0.00	0.00	80.70	375	0.18	105.94	74.39	0.67	0.77	0.73	108%	578.430	574.990	574.800	3.065	1.925
SanMH3	SanMH2			2105			93.66		0 48	313 2	2.22 16	.71		9.91	0.00	7.35	1.98	51.70	29.00		0.00	0.00	80.70	375	0.10	64.63	55.44	0.50	0.56	0.57	146%	577.100	574.800	574.730	1.925	3.645
		Commercial		2105			93.66		0 48	13 2	2.22 16	.71	4.25	14.16	0.85	6.26	2.83	54.86	30.19		0.00	0.00	85.05													
		Industrial		2105			93.66		0 48	13 2	2.22 16	.71	53.12	67.28	10.62	3.10	13.46	78.91	45.06		0.00	0.00	123.97													
		Institutional		2105			93.66		0 48	13 2	2.22 16	.71	6.86	74.14	1.37	2.97	14.83	81.20	46.98		0.00	0.00	128.18													
		LDR	113	2218	2.2	40.42	134.08	2	49 50	62 2	2.21 17	.58		74.14	0.00	2.97	14.83	82.92	58.30		0.00	0.00	141.22													
		MDR	11	2229	2.2	0.88	134.96	2	24 50	86 2	2.21 17	.66		74.14	0.00	2.97	14.83	83.09	58.55		0.00	0.00	141.63													
SanMH2	SanMH1			2229			134.96		0 50	86 2	2.21 17	.66		74.14	0.00	2.97	14.83	83.09	58.55		0.00	0.00	141.63	375	0.18	95.10	74.39	0.67	1.30	0.77	190%	578.750	574.730	574.560	3.645	2.465
SanMH1				2229			134.96		0 50	86 2	2.21 17	.66		74.14	0.00	2.97	14.83	83.09	58.55		0.00	0.00	141.63									577.400	574.640		2.760	
																																	invert to			
Totals							231.25		70	96				222.93			44.59																WWTP			

 Notes:
 1. PDWF - Peak Dry Weather Flow

 2. PWWF - Peak Wet Weather Flow

 3. Based on design standard, PWWF ≤ 0.86% of pipe capacity

 4. Industrial / Commercial flow generation as per City of Edmonton Design Standards (0.2 L/s/ha)

 5. Institutional Flow generation rate assumed to be same as Commercial / Industrial

 6. Casing inverts used for T101 - SanMH231 (600 mm casing with 500 mm lining)

 7. Sewer between SanMH230 and SanMH177 is of unknown size, assumed to be 300 mm

 8. Pipe slopes taken from drawings and calculated from survey data

 9. Some invert and slope information might contain errors due to combining data from different sources

10. Flow Monitoring manholes

Manhole #	Monitor #
143	4
206	3
177	2
3	1

11. pipes that are over 86% capacity

2.2 cap/lot 240 cap/ha

ential

Table 3.6 Upgraded Sewer Utilization Calculations - Replacement

PROJECT: TOWN OF VERMILION	Per Capita Flow =	300	L/cap/day	Infiltration Allowance =	0.28	L/s/ha	Population Density
JOB No. : 102414	Commercial Flow =	0.20	L/s/ha	Sag MH Inflow =	0.4	L/s/MH	Low and Medium Density Reside
DATE: 2-Feb-10	Industrial Flow =	0.20	L/s/ha	Pipe Roughness Coeff. =	0.013	(unitless)	High Density Residential
Computed by: SHS Checked by: BER	Institutional Flow =	0.20	L/s/ha	Residential Peaking Factor =	2.6P-0.1		5

							Resid	ential						Non-F	Residentia	I				1/1															
From	То	Landuse	Added	Total	Pop.	Added	Total	Pop.	Added	I Total	Peak	Avg.	Added	Total	Added	Peak	Tot Avg	PDWF	General	Added Total	Sag MH	PWWF	Size	Slope	Length	Cap.	Full Flow	PWWF Flow	PDWF Flow	PWWF	U/S	U/S	D/S	U/S	D/S
мн	MH		Lots	Lots	Dens. (cap/lot	Area t) (ha)	Area (ha)	Dens. (cap/ha	Pop. a)	Pop.	Factor	Flow (L/s)	Area (ha)	Area (ha)	Avg Flov (L/s)	w Factor	· Flow (L/s)	(L/s)	(L/s)	Sag MH Sag MH	Inflow (L/s)	(L/s)	(mm)	(%)	(m)	(L/s)	Vel. (m/s)	Vel. (m/s)	Vel. (m/s)	to Cap. (%)	Rim (m)	lnv. (m)	lnv. (m)	Cover (m)	Cover (m)
		Industrial LDR	1670	0 1670	2.2	46.81	0.00		0 3674	0 3674 3678	1.50 2.28	0.00	1.94	1.94 1.94	0.39	15.31 15.31	0.39	5.94 35.06	0.54	0.00	0.00	6.48 48.71													
SanMH143 SanMH142	SanMH142 SanMH141	HDR Upgrade 1	3	1675 1675 1675	2.2	0.25	47.16 47.16 47.16 47.16	240	4 60 0 0	3738 3738 3738	2.28 2.28 2.28 2.28	12.98 12.98 12.98 12.98		1.94 1.94 1.94 1.94	0.00 0.00 0.00 0.00	15.31 15.31 15.31 15.31	0.39 0.39 0.39 0.39	35.52 35.52 35.52	13.75 13.75 13.75 13.75	0.00 0.00 0.00 0.00	0.00 0.00 0.00	49.27 49.27 49.27 49.27	525 300	<i>0.0</i> 2 0.84	22.70 35.40	<i>60.8</i> 2 88.63	0.28 1.25	<i>0.31</i> 1.29	<i>0.29</i> 1.18	81% 56%	<i>611.606</i> 611.492	<i>606.276</i> 606.192	<i>606.27</i> 2 605.896	<i>4.805</i> 5.000	<i>4.695</i> 5.350
		Commercial Institutional LDR HDR	28	1675 1675 1703 1708	2.2	7.39	47.16 47.16 54.55 55.06	240	0 0 62 122	3738 3738 3800 3922	2.28 2.28 2.28 2.28	12.98 12.98 13.19 13.62	0.15 4.20	2.09 6.29 6.29	0.03 0.84 0.00	14.81 9.02 9.02 9.02	0.42 1.26 1.26 1.26	35.77 40.93 41.36 42.23	13.79 14.97 17.04 17.18	0.00 0.00 0.00	0.00 0.00 0.00	49.56 55.89 58.40 59.41													
SanMH141	SanMH206	IDR	6	1708	22	1.08	55.06 56 14	240	0	3922 3936	2.27	13.62 13.62		6.29	0.00	9.02	1.20	42.23	17.18	0.00	0.00	59.41 59.81	300	0.78	41.20	85.40	1.21	1.31	1.20	70%	611.546	605.896	605.574	5.350	6.200
SanMH206	SanMH341	LDR	2	1714	2.2	0.36	56.14 56.50		0	3936 3940	2.27	13.67		6.29	0.00	9.02	1.26	42.33	17.48	0.00	0.00	59.81	300	3.41	61.80	178.57	2.53	2.28	2.07	33%	612.074	605.574	603.465	6.200	3.540
SanMH341	SanMH341A SanMH329	LDIX	-	1716	2.2	0.00	56.50 56.50		0	3940 3940	2.27	13.68		6.29	0.00	9.02	1.26	42.36	17.58	0.00	0.00	59.94	300 300	10.60	69.20 61.50	314.83	4.45	3.43	3.13	19% 57%	607.305	603.315	595.972	3.690	1.850
SanMH329 SanMH328	SanMH328 SanMH340	Upgrade 2		1716			56.50 56.50		0	3940 3940	2.27	13.68 13.68		6.29	0.00	9.02	1.20	42.36	17.58	0.00	0.00	59.94 59.94	375	0.49	62.00 42.50	122.73 81.48	1.11	1.10	1.01	49% 74%	597.297 596 723	595.117 594 753	594.813	1.805	1.535
SanMH340	SanMH327	Ungrade 3		1716			56.50 56.50		0	3940 3940	2.27	13.68		6.29	0.00	9.02	1.26	42.36	17.58	0.00	0.00	59.94	300	0.59	45.90	74.28	1.05	1.17	1.08	81% 62%	596.742	594.312	594.043	2.130	1.720
SanMH327A-R	SanMH326-R	Upgrade 3		1716			56.50 56.50		0	3940 3940	2.27	13.68		6.29	0.00	9.02	1.26	42.36	17.58	0.00	0.00	59.94	375	0.31	31.10	97.23 97.23	0.88	0.93	0.85	62%	597.013	593.86	593.76	2.780	1.895
SanMH325-R SanMH342-R	SanMH342-R T100-R	Upgrade 3		1716 1716			56.50 56.50		0	3940 3940	2.27	13.68 13.68		6.29 6.29	0.00	9.02	1.26	42.36	17.58	0.00	0.00	59.94 59.94	375	0.31 0.31	84.60 80.95	97.23 97.23	0.88 0.88	0.93	0.85 0.85	62% 62%	595.702 595.422	593.42 593 13	593.16 592.88	1.906	1.886 2.264
T100-R T101	T101 SanMH231	opgrado o		1716 1716			56.50 56.50		0	3940 3940	2.27	13.68 13.68		6.29 6.29	0.00	9.02	1.26	42.36	17.58	0.00	0.00	59.94 59.94	375 500	0.31	24.75 123.78	97.66 356.22	0.88	0.93	0.85	61% 17%	595.521 595.200	592.85 592.600	592.775 591.500	2.294	2.050
1101	ounini izo i	Commercial		1716			56.50 56.50		0	3940 3940	2.27	13.68 13.68	47.11 2.10	53.40 55.50	9.42 0.42	3.44	10.68	67.80	30.77	0.00	0.00	98.57	000	0.00	120.70	000.22	1.01	1.00	1.20	11 /0	000.200	002.000	001.000	2.100	0.000
		Institutional	762	1716	22	94 92	56.50 151.42		0 1676	3940 5616	2.27	13.68 19.50	99.58	155.08 155.08	19.92	2.50 2.50	31.02 31.02	108.55	59.24 85.82	0.00	0.00	167.79 206.03													
		MDR	37	2515	2.2	0.32	151.74	240	81 252	5698 5950	2.18	19.78		155.08	0.00	2.50	31.02 31.02	120.76	85.91 86.20	0.00	0.00	206.67													
SanMH231	SanMH TW1	Upgrade 4.B	17	2532		1.00	152.79	240	0	5950 5950	2.10	20.66		155.08	0.00	2.50	31.02	122.48	86.20 86.20	0.00	0.00	208.68	375	2.00	50 75	247.95	2.25	2.51	2.24	84% 53%	595.0	591.078	590.08	3.547	5.147
SanMH TW2 SanMH TW3	SanMH TW2 SanMH TW3	Upgrade 4.B		2532			152.79		0	5950 5950	2.10	20.66		155.08	0.00	2.50	31.02 31.02	122.48	86.20 86.20	0.00	0.00	208.68	375	4.00	115 115	350.66	3.17	3.31	2.89	60% 61%	589.7 583.8	586.23 581.60	581.63 577.24	3.044	1.794
SanMH TW4	SanMH TW5	LDR	22	2554 2554	2.2	4.99	157.78		48	5998 5998	2.17	20.83		155.08	0.00	2.50	31.02 31.02	122.81	87.60 87.60	0.00	0.00	210.41	600	0.17	95	253 16	0.00	1.00	0.89	83%	579.6	577.02	576.86	2 003	2 685
SanMH TW5 SanMH TW6	SanMH TW6	Upgrade 4.B		2554			157.78		0	5998 5998	2.17	20.83		155.08	0.00	2.50	31.02	122.81	87.60 87.60	0.00	0.00	210.41	600 600	0.17	95 95	253.16	0.90	1.00	0.89	83%	580.1	576.83	576.66 576.47	2.715	2.736
SanMH TW7 SanMH TW8	SanMH TW8 SanMH TW9	Upgrade 4.B		2554 2554			157.78		0	5998 5998	2.17	20.83		155.08	0.00	2.50	31.02 31.02	122.81	87.60 87.60	0.00	0.00	210.41	600 600	0.17	95 95	253.16	0.90	1.00	0.89	83% 83%	580.0 579.8	576.44 576.25	576.28 576.09	2.958	2.919
SanMH TW9 SanMH TW10	SanMH TW10 SanMH TW11	Upgrade 4.B		2554			157.78		0	5998 5998	2.17	20.83		155.08	0.00	2.50	31.02 31.02	122.81	87.60 87.60	0.00	0.00	210.41	600 675	0.17	95 95	253.16	0.90	1.00	0.89	83% 79%	579.9 579.4	576.06 575.82	575.90 575.73	3.271	2.862
SanMH TW11	SanMH TW12	Upgrade 4.B		2554 2554			157.78		0	5998 5998	2.17	20.83	3.62	155.08 158.70	0.00	2.50	31.02 31.74	122.81	87.60 88.61	0.00	0.00	210.41	675	0.10	75	265.82	0.74	0.82	0.73	79%	578.8	575.70	575.62	2.417	2.842
		LDR	364 1	2918	2.2	31.75 0.33	189.53		801 2	6799 6801	2.15	23.61 23.62	0.02	158.70 158.70	0.00	2.50	31.74	130.02	97.50 97.60	0.00	0.00	227.53													
SanMH TW12	SanMH TW13	HDR Upgrade 4 B	2	2921 2921	2.2	0.09	189.95	240	22 0	6823 6823	2.15	23.69 23.69		158.70 158.70	0.00	2.50	31.74 31.74	130.18	97.62 97.62	0.00	0.00	227.81	675	0 10	115	265 82	0 74	0.83	0 74	86%	579 1	575 59	575 48	2 872	2 497
SanMH TW13 SanMH TW14	SanMH TW14 SanMH TW15	Upgrade 4.B		2921 2921			189.95		0	6823 6823	2.15	23.69		158.70 158.70	0.00	2.50	31.74 31.74	130.18	97.62 97.62	0.00	0.00	227.81	675 675	0.10	115 120	265.82	0.74	0.83	0.74	86% 86%	578.7 578.6	575.45 575.30	575.33 575.18	2.527	2.627
SanMH TW15 SanMH TW16	SanMH TW16 SanMH TW17	Upgrade 4.B		2921 2921			189.95		0	6823 6823	2.15	23.69 23.69		158.70 158.70	0.00	2.50	31.74 31.74	130.18 130.18	97.62 97.62	0.00	0.00	227.81	675 675	0.10	110	265.82	0.74	0.83	0.74	86% 86%	578.6 578.4	575.15 575.01	575.04 574.90	2.792	2.712
SanMH TW17	SanMH TW18	Upgrade 4.B Commercial		2921 2921			189.95		0	6823 6823	2.15	23.69 23.69	4 25	158.70 162.95	0.00	2.50	31.74	130.18	97.62 98.81	0.00	0.00	227.81	675	0.10	65	265.82	0.74	0.83	0.74	86%	578.8	574.87	574.81	3.202	1.917
		Industrial		2921 2921			189.95		0	6823 6823	2.15	23.69 23.69	53.12 6.86	216.07	10.62 1.37	2.50 2.50	43.21 44.59	158.87	113.69 115.61	0.00	0.00	272.55													
		LDR	113 11	3034 3045	2.2 2.2	40.42 0.88	230.37		249 24	7071	2.14	24.55 24.64	0.00	222.93 222.93	0.00	2.50 2.50	44.59 44.59	163.96 164.12	126.92 127.17	0.00	0.00	290.89 291.29													
SanMH TW18 SanMH TW19	SanMH TW19	Upgrade 4.B Upgrade 4.B		3045 3045	2.2	0.00	231.25 231.25		0	7096 7096	2.14 2.14	24.64 24.64		222.93 222.93	0.00	2.50 2.50	44.59 44.59	164.12 164.12	127.17 127.17	0.00	0.00	291.29 291.29	750 750	0.10	95	352.05	0.80	0.89	0.78	83%	577.4	574.73	574.64 574.64 invert to	1.917	
Totals							231.25			7096				222.93			44.59																WWTP		

 Notes:
 1. PDWF - Peak Dry Weather Flow

 2. PWWF - Peak Wet Weather Flow

 3. Based on design standard, PWWF ≤ 0.86% of pipe capacity

 4. Industrial / Commercial flow generation as per City of Edmonton Design Standards (0.2 L/s/ha)

 5. Institutional Flow generation rate assumed to be same as Commercial / Industrial

 6. Casing inverts used for T101 - SanMH221 (600 mm casing with 500 mm lining)

 7. Pipe slopes taken from drawings and calculated from survey data

 8. Some invert and slope information might contain errors due to combining data from different sources

9. Flow Monitoring manholes

Manhole #	Monitor #
143	4
206	3
177	2
3	1

F#CUS

2.2 cap/lot 240 cap/ha

ential

Figure 3.3 Flow Data Comparison Between Monitoring Sites

TOWN OF VERMILION

SANITARY TRUNK FLOW MONITORING AND UPGRADE

LEGEND:

TOWN BOUNDARY
< 86% CAPACITY
86% - 100% CAPACITY
100% - 120% CAPACITY
> 120% CAPACITY

EXISTING SANITARY SEWER TRUNK UTILIZATION

FIGURE 3.4

This drawing and design is protected under copyright, and any use, reproduction or revision is strictly prohibited without the written permission of Focus Corporation.

Engineering - Geomatics - Planning

roject No.	102414
------------	--------

Date. DEC., 2009

Scale N.T.S.

FILE NAME: 102414-FIG 3.4-EX SEWER.dwg

TOWN OF VERMILION

SANITARY TRUNK FLOW MONITORING AND UPGRADE

LEGEND:

TOWN BOUNDARY
< 86% CAPACITY
86% - 100% CAPACITY
100% - 120% CAPACITY
> 120% CAPACITY

EXISTING SANITARY SEWER TRUNK UTILIZATION WITH FUTURE DEVELOPMENT FIGURE 3.5

This drawing and design is protected under copyright, and any use, reproduction or revision is strictly prohibited without the written permission of Focus Corporation.

Engineering - Geomatics - Planning

Project No. 102414

Date. DEC., 2009

Scale N.T.S.

D FILE NAME: 102414-FIG 3.5-FUTURE SEWER.dwg

PLOTTED: March 5, 2010

4.0 COST ESTIMATES

These cost estimates are based upon current (2010) unit rates for similar construction work in Edmonton. A contingency allowance of 20% and engineering and testing costs of 15% were also added to the construction cost.

4.1 SANITARY TRUNK UPGRADES WEST OF HIGHWAY 41

The proposed upgrades west of Highway 41 are common to both sewer trunk upgrade scenarios. The preliminary cost estimates for these upgrades are summarized in Table 4.1. Insulation costs were added where the proposed sewer is shallow and does not meet 2.6 metres of cover.

The current cost for sanitary trunk upgrades upstream of Highway 41 is approximately \$1,187,000, with the cost breakdown as follows:

4.1.1 Upgrade 1: \$64,000

Costs are based on open cut between sanitary manholes 143 and 142, with the existing 300 mm sewer removed and replaced with a 525 mm.

From a hydraulic standpoint it would be better to replace both the undersized segment and the leg downstream, between sanitary manholes 142 and 141, as this would allow a steeper grade on the sewer between sanitary manholes 143 and 142.

4.1.2 Upgrade 2: \$175,000

As discussed previously in Section 3.3.3, there is only marginal need for this upgrade. Flows for this portion of the sanitary trunk can be monitored, without replacing the sewer unless it becomes necessary. Since the proposed sewer upgrade is located in the Vermilion Provincial Park, cost estimates include additional expenses for directional drilling or augering.

4.1.3 Upgrade 3: \$948,000

This portion of the existing sewer trunk is located in Vermilion Provincial Park. As mentioned, due to existing terrain and restricted working space it is recommended to replace this entire length of sewer at once. Cost estimates for this upgrade are based on completing the work via directional drilling or augering to minimize the surface impact.

4.2 SANITARY TRUNK UPGRADES EAST OF HIGHWAY 41

The preliminary cost estimates presented in Tables 4.2 and 4.3 detail the cost estimates for the sanitary trunk upgrades east of Highway 41. Cost estimates have been prepared for open cut construction as well as confined open cut construction where clearing would be limited to a 5 metre width and spoil material would be cycled.

Based on terrain and vegetation conditions, a combination of the two installation methods might be the most advantageous solution, which would result in the expected cost being between the open cut and confined open cut cost estimates.

Insulation costs were added where the proposed sewer is shallow and does not meet 2.6 metres of cover.

4.2.1 Upgrade 4.A - Twinning

The preliminary cost estimates for this upgrade are summarized in Table 4.2

The estimated cost for sewer trunk twinning from sanitary manhole 231 to the WWTP is approximately \$ 1,243,000 for green-field open-cut installation and \$ 2,031,000 for confined open-cut.

4.2.2 Upgrade 4.B - Replacement

The preliminary cost estimates for this upgrade are summarized in Table 4.3

The estimated cost for sewer trunk replacement from sanitary manhole 231 to the WWTP is approximately \$ 1,318,000 for open cut installation and \$ 2,106,000 for confined open cut. These costs do not include allowance for bypass or pumping costs.

Sanitary	Sewer	Trunk	Upgrades	West of	f Highway	41	Crossing	
- annan	,		epg.aaee		· · ···g····~,		••••••	

ltem #	Item		Item Unit Unit Price		Quantity	Cost	
Upgrade 1	San MH 143 to San MH 142 - ope	n cut					
1.1	525 mm PVC @ 4 - 6 m Depth	m	\$	1,400	23	\$ 32,200	
1.2	Remove and replace	m	\$	660	23	\$ 15,180	
1.3	Manholes (1200 mm)	vm	\$	1.300		\$ -	
1.4	Contingency Allowance @20%		Ŧ	.,		\$ 9.476	
1.5	Engineering and Testing @15%					\$ 7,107	
	Sub-total					\$ 63,963	
Upgrade 2	San MH 206 to San MH 341 - dire	ctional o	drill /	auger			
2.1	375 mm PVC @ 4 - 6 m Depth	m	\$	1,780	62	\$ 110,360	
2.2	Manholes (1200 mm)	vm	\$	1,300	-	\$ -	
2.3	Pipe insulation (2.8 m wide)	m ²	\$	110	174	\$ 19,096	
2.4	Contingency Allowance @20%					\$ 25,891	
2.5	Engineering and Testing @15%					\$ 19,418	
	Sub-total					\$ 174,766	
Upgrade 3	San MH 327 to T 101 - directiona	l drill / a	uger				
3.1	375 mm PVC @ 0 - 4 m Depth	m	\$	1.780	330	\$ 587.400	
3.2	Manholes	vm	\$	1,300	10	\$ 13,000	
3.3	Pipe insulation (2.8 m wide)	m	\$	110	924	\$ 101,640	
3.4	Contingency Allowance @20%					\$ 140,408	
3.5	Engineering and Testing @15%					\$ 105,306	
	Sub-total					\$ 947,754	

Notes: 1. Assumed 2.8 m wide pipe insulation, 75 mm thickness

2. Pipe costs for Upgrade 1 include street restoration

	Sanitary	/ Sewer	Trunk	Upgrades	East of Hi	ghway 41	Crossing
--	----------	---------	-------	----------	------------	----------	----------

ltem #	ltem	Unit	Un	nit Price	Quantity	Cost
Upgrade 4.A	Twin Line from San MH 231 to S	TWTP - o	pen o	cut		
4.A.1	375 mm PVC @ 0 - 4 m Depth	m	\$	280	230	\$ 64,400
4.A.2	375 mm PVC @ 4 - 6 m Depth	m	\$	380	125	\$ 47,500
4.A.3	525 mm PVC @ 0 - 4 m Depth	m	\$	380	475	\$ 180,500
4.A.4	600 mm PVC @ 0 - 4 m Depth	m	\$	430	995	\$ 427,850
4.A.5	Manholes (1200 mm)	vm	\$	1,300	17	\$ 22,100
4.A.6	Manholes (1500 mm)	vm	\$	1,700	45	\$ 76,500
4.A.7	Pipe insulation (2.2 m wide)	m	\$	110	924	\$ 101,640
4.A.8	Contingency Allowance @20%					\$ 184,098
4.A.9	Engineering and Testing @15%					\$ 138,074
	Sub-total					\$ 1,242,662
Alternative inst	tallation method					
Upgrade 4.A	Twin Line from San MH 231 to S	TWTP - 0	open	cut - con	fined	
4.A.1	375 mm PVC @ 0 - 4 m Depth	m	\$	600	230	\$ 138,000
4.A.2	375 mm PVC @ 4 - 6 m Depth	m	\$	700	125	\$ 87,500
4.A.3	525 mm PVC @ 0 - 4 m Depth	m	\$	700	475	\$ 332,500
4.A.4	600 mm PVC @ 0 - 4 m Depth	m	\$	750	995	\$ 746,250
4.A.5	Manholes (1200 mm)	vm	\$	1,300	17	\$ 22,100
4.A.6	Manholes (1500 mm)	vm	\$	1,700	45	\$ 76,500
4.A.7	Pipe insulation (2.2 m wide)	m	\$	110	924	\$ 101,640
4.A.8	Contingency Allowance @20%					\$ 300,898
4.A.9	Engineering and Testing @15%					\$ 225,674
	Sub-total					\$ 2,031,062

Notes: 1. Assumed 2.2 m wide pipe insulation, 75 mm thickness

2. For confined installation assume 5 m wide clearing, cycle dirt 1 mile round trip

\$

\$

\$

\$

101,640

312,048

234,036

2,106,324

924

Sanitary Sewer Trunk Upgrades East of Highway 41 Crossing

ltem #	Item	Unit l		it Price	Quantity	Cost	
Upgrade 4.B	Replace Line from San MH 231 to	o STWTP	- ор	en cut			
4.B.1	375 mm PVC @ 0 - 4 m Depth	m	\$	280	230	\$	64,400
4.B.2	375 mm PVC @ 4 - 6 m Depth	m	\$	380	125	\$	47,500
4.B.3	600 mm PVC @ 0 - 4 m Depth	m	\$	430	570	\$	245,100
4.B.4	675 mm PVC @ 0 - 4 m Depth	m	\$	460	805	\$	370,300
4.B.5	750 mm PVC @ 0 - 4 m Depth	m	\$	500	95	\$	47,500
4.B.6	Manholes (1200 mm)	vm	\$	1,300	14	\$	18,200
4.B.7	Manholes (1500 mm)	vm	\$	1,700	48	\$	81,600
4.B.8	Pipe insulation (2.2 m wide)	m	\$	110	924	\$	101,640
4.B.9	Contingency Allowance @20%					\$	195,248
4.B.10	Engineering and Testing @15%					\$	146,436
	Sub-total					\$	1,317,924
Alternative inst	tallation method						
Upgrade 4.B	Replace Line from San MH 231 to	o STWTP	- ор	en cut - c	confined		
4.B.1	375 mm PVC @ 0 - 4 m Depth	m	\$	600	230	\$	138,000
4.B.2	375 mm PVC @ 4 - 6 m Depth	m	\$	700	125	\$	87,500
4.B.3	600 mm PVC @ 0 - 4 m Depth	m	\$	750	570	\$	427,500
4.B.4	675 mm PVC @ 0 - 4 m Depth	m	\$	780	805	\$	627,900
4.B.5	750 mm PVC @ 0 - 4 m Depth	m	\$	820	95	\$	77,900
4.B.6	Manholes (1200 mm)	vm	\$	1,300	14	\$	18,200
4.B.7	Manholes (1500 mm)	vm	\$	1,700	48	\$	81,600

\$ 4.B.8 Pipe insulation (2.2 m wide) 110 m 4.B.9 Contingency Allowance @20% 4.B.10 Engineering and Testing @15%

Sub-total

Notes:

1. Assumed 2.2 m wide pipe insulation, 75 mm thickness

2. For confined installation assume 5 m wide clearing, cycle dirt 1 mile round trip

3. Costs do not include allowance for bypass / pumping

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The following conclusions are a result of the analysis conducted in this study:

- The flow monitoring program that took place during the summer of 2007 did not produce flow monitoring data that could be used for estimating average dry weather flows. Instead a dry weather wastewater generation rate of 300 L/person/day was used.
- Survey data indicates a negative slope of -0.2% for the sewer between SanMH327 and SanMH327A.
- The existing sewer east of Highway 41 is shallow in places, with cover falling under the recommended 2.6 metres to the top of pipe.
- Based on the current development and land uses it can be concluded that most of the sanitary sewer trunk west of Highway 41 has additional capacity, although there are several segments of 300 mm sewer with utilization over 86%.
- East of Highway 41 the existing trunk is running significantly over capacity, with utilization as high as 311% upstream of the WWTP.
- The existing sewer trunk utilization was reviewed with the addition of future residential, commercial and institutional development. The amount of trunk sewer with utilization over 86% is expected to increase, as well as worsen the conditions west of Highway 41.

5.2 **RECOMMENDATIONS**

The following actions are recommended based on this review of the sanitary trunk capacity:

- Confirm rim and invert elevations along the sanitary sewer trunk and check sanitary pipes slopes prior to detailed design. This includes confirming the negative slope for the sewer between SanMH327 and SanMH327A.
- The physical condition of the existing sanitary trunk sewer east of Highway 41 should be investigated to determine the remaining service life of the existing trunk.
- The replacement option outlined as 4.B is recommended over the twinning option as it provides the full future required capacity for only a marginal increase in cost. Depending on the existing sewer's condition it can either be abandoned or maintained in service for emergencies.
- Proceed with design of the sanitary trunk upgrade east of Highway 41.

6.0 REFERENCES

City of Edmonton (2004), Design and Construction Standards, Volume 3 (Drainage)

Stantec Consulting Ltd. (1994), <u>Sewage Treatment and Collection Study</u>, (prepared for the Town of Vermilion)

Town of Vermilion (2004), Municipal Development Plan, Bylaw 3-2004

Town of Vermilion (2006), Land Use Bylaw 1-2006

APPENDIX A

Flow Monitoring Data

Figure A.1 Site 1 - Depth, Flow and Velocity Data

Figure A.2 Site 2 - Depth, Flow and Velocity Data

Figure A.3 Site 3 - Depth, Flow and Velocity Data

Date

Figure A.4 Site 4 - Depth, Flow and Velocity Data

Figure A.5 5-Minute Rainfall Intensity